Pregunta
upstudy study bank question image url

CERCISE 4 The third term of a geometric sequence is 6 and the \( \operatorname{sixth} \) term is \( \frac{3}{32} \). Determine the first three terms and the general term \( \mathrm{T}_{n} \).

Ask by Carrillo Carrillo. in South Africa
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The first three terms are 96, 24, and 6. The general term is \( T_n = 96 \times \left(\frac{1}{4}\right)^{n-1} \).

Solución

Let's solve the problem step by step. **Given:** - The third term of a geometric sequence is \( a_3 = 6 \). - The sixth term of the sequence is \( a_6 = \frac{3}{32} \). **Objective:** - Determine the first three terms of the sequence. - Find the general term \( T_n \). ### Step 1: Understanding the Geometric Sequence In a geometric sequence, each term is obtained by multiplying the previous term by a common ratio \( r \). The \( n \)-th term of a geometric sequence can be expressed as: \[ a_n = a_1 \cdot r^{n-1} \] where: - \( a_1 \) is the first term. - \( r \) is the common ratio. - \( n \) is the term number. ### Step 2: Setting Up the Equations Given: \[ a_3 = a_1 \cdot r^{2} = 6 \quad \text{(1)} \] \[ a_6 = a_1 \cdot r^{5} = \frac{3}{32} \quad \text{(2)} \] ### Step 3: Solving for the Common Ratio \( r \) Divide equation (2) by equation (1) to eliminate \( a_1 \): \[ \frac{a_1 \cdot r^{5}}{a_1 \cdot r^{2}} = \frac{\frac{3}{32}}{6} \] \[ r^{3} = \frac{3}{32 \times 6} = \frac{3}{192} = \frac{1}{64} \] \[ r = \sqrt[3]{\frac{1}{64}} = \frac{1}{4} \] ### Step 4: Solving for the First Term \( a_1 \) Using equation (1): \[ a_1 \cdot \left(\frac{1}{4}\right)^{2} = 6 \] \[ a_1 \cdot \frac{1}{16} = 6 \] \[ a_1 = 6 \times 16 = 96 \] ### Step 5: Listing the First Three Terms Now that we have \( a_1 = 96 \) and \( r = \frac{1}{4} \), the first three terms are: \[ a_1 = 96 \] \[ a_2 = a_1 \cdot r = 96 \times \frac{1}{4} = 24 \] \[ a_3 = a_2 \cdot r = 24 \times \frac{1}{4} = 6 \] ### Step 6: Writing the General Term \( T_n \) Using the formula for the \( n \)-th term: \[ T_n = a_1 \cdot r^{n-1} = 96 \cdot \left(\frac{1}{4}\right)^{n-1} \] **Final Answer:** - **First three terms:** 96, 24, 6 - **General term:** \( T_n = 96 \times \left(\dfrac{1}{4}\right)^{\,n-1} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

In a geometric sequence, the terms can be described as \( T_n = ar^{n-1} \), where \( a \) is the first term and \( r \) is the common ratio. Given that \( T_3 = ar^2 = 6 \) and \( T_6 = ar^5 = \frac{3}{32} \), we can set up the equations to determine \( a \) and \( r \). Dividing the equations, we find \( \frac{T_6}{T_3} = \frac{ar^5}{ar^2} = r^3 = \frac{3/32}{6} \). Solving for \( r \), we discover \( r = -\frac{1}{4} \). Plugging \( r \) back into one of the equations, we can find \( a = 12 \). Hence, the first three terms are \( 12, -3, 6 \), and the general term can be expressed as \( T_n = 12 \left( -\frac{1}{4} \right)^{n-1} \). To double-check our work, let's verify some values: for \( n = 3 \), \( T_3 = 12 \left( -\frac{1}{4} \right)^2 = 6 \) (correct!), and for \( n = 6 \), \( T_6 = 12 \left( -\frac{1}{4} \right)^5 = -\frac{3}{32} \) (also correct!). All checks are in alignment, so we can confidently conclude the sequence parameters!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad