Simplify the following expression by doing one calcu \[ \begin{array}{ll} 2.30^{*} & 4+2 \times 3-1 \\ 2.31^{*} & 1+3 \times 2 \div 6-2 \\ 2.32^{* *} & 9-(12-8) \\ 2.33^{* *} & 3+3 \times 3-3 \\ 2.34^{* *} & (3+2) \times(6-2) \\ 2.35^{* *} & 2+2 \times 2+2-2+(2+2) \\ 2.36^{* *} & 8-2 \times 3+6-(5-1) \\ 2.37^{* *} & 10-4+(3-1) \times 3 \\ 2.38^{* *} & 3 \times 0+2 \times 0 \\ 2.39^{* *} & (6-2+7)+(3-2+12) \end{array} \] \( 2.40^{* * *} \) Simplify by doing only one calculation each step. \[ \frac{(5 \times 12+16 \div 4) \div 8}{(16-8) \times 2} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
First, let's simplify the numerator of the fraction \(\frac{(5 \times 12 + 16 \div 4) \div 8}{(16 - 8) \times 2}\). Starting with the expression inside the parentheses, we calculate \(5 \times 12\), which equals 60, and then simplify \(16 \div 4\) to get 4. Adding these results together gives us \(60 + 4 = 64\). Now, we divide \(64\) by \(8\), which results in \(8\). Next, we simplify the denominator \((16 - 8) \times 2\). First, calculate \(16 - 8\) to get \(8\), and then multiply by \(2\) to yield \(16\). Now, we have \(\frac{8}{16}\), which simplifies to \(\frac{1}{2}\). Therefore, the final simplified result of the expression is \(\frac{1}{2}\).