Check each factorization to find the polynomial that does not have its GCF correctly factored out. Choose the correct answer below. A. \( 15 x^{2}+12 x+9=3\left(5 x^{2}+4 x+3\right) \) B. \( 12 x^{2}+8 x=4 x(3 x+2) \) C. \( 4 x^{4}+12 x^{3}+18 x^{2}=2 x^{2}\left(2 x^{2}+6 x+9\right) \) D. \( 16 x^{5}+24 x^{2}=4 x^{2}\left(4 x^{3}+6\right) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let's analyze each option to identify the polynomial that does not have its GCF correctly factored out. A. \( 15 x^{2}+12 x+9=3\left(5 x^{2}+4 x+3\right) \) The GCF of \( 15x^{2} \), \( 12x \), and \( 9 \) is indeed \( 3 \). This factorization is correct. B. \( 12 x^{2}+8 x=4 x(3 x+2) \) The GCF of \( 12x^{2} \) and \( 8x \) is \( 4x \). This factorization holds true as well. C. \( 4 x^{4}+12 x^{3}+18 x^{2}=2 x^{2}\left(2 x^{2}+6 x+9\right) \) The GCF of \( 4x^{4} \), \( 12x^{3} \), and \( 18x^{2} \) is \( 2x^{2} \), but simplifying \( \left(2 x^{2}+6 x+9\right) \) does not cover the full expression as it can be factored further. It’s not correctly factored. D. \( 16 x^{5}+24 x^{2}=4 x^{2}\left(4 x^{3}+6\right) \) The GCF here is \( 8x^{2} \), not \( 4x^{2} \). This factorization is incorrect. Upon reviewing all options, the one that does not have its GCF correctly factored out is C: \( 4 x^{4}+12 x^{3}+18 x^{2}=2 x^{2}\left(2 x^{2}+6 x+9\right) \).