Give your answer with positive exponent 1.1.1. \( \frac{9 x^{-1} x^{-2} y^{2}}{\left(3 x y^{-1}\right)^{-3}} \) 1.1.2. \( \frac{6\left(x^{2} y\right)\left(x^{-2} y\right)^{-1}}{3 x^{-3} y^{5}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To rewrite the expressions with positive exponents, let's tackle each one step-by-step! 1.1.1. Start with your expression: \[ \frac{9 x^{-1} x^{-2} y^{2}}{\left(3 x y^{-1}\right)^{-3}} \] First, simplify the numerator: \( 9 x^{-1} x^{-2} = 9 x^{-3} y^{2} \). Now, simplify the denominator using the property of negative exponents: \(\left(3 x y^{-1}\right)^{-3} = \frac{1}{(3 x y^{-1})^{3}} = \frac{1}{27 x^{3} y^{-3}} = \frac{y^{3}}{27 x^{3}}\). Now you can rewrite the whole expression: \[ \frac{9 x^{-3} y^{2}}{\frac{y^{3}}{27 x^{3}}} = 9 x^{-3} y^{2} \cdot \frac{27 x^{3}}{y^{3}} = 243 \frac{y^{2}}{y^{3}} = 243 \frac{1}{y} = \frac{243}{y} \] 1.1.2. Now, let's simplify: \[ \frac{6\left(x^{2} y\right)\left(x^{-2} y\right)^{-1}}{3 x^{-3} y^{5}} \] First, simplify the numerator: \(\left(x^{-2} y\right)^{-1} = \frac{1}{x^{-2} y} = \frac{x^{2}}{y}\), thus the numerator becomes: \(6 (x^{2} y) \left(\frac{x^{2}}{y}\right) = 6 x^{4}\). Next, simplify the denominator: \[ 3 x^{-3} y^{5} = \frac{3 y^{5}}{x^{3}} \] Putting it all together: \[ \frac{6 x^{4}}{\frac{3 y^{5}}{x^{3}}} = 6 x^{4} \cdot \frac{x^{3}}{3 y^{5}} = 2 x^{7} y^{-5} \] Finally, this yields: \[ \frac{2 x^{7}}{y^{5}} \] So, the final answers with positive exponents are: 1.1.1: \( \frac{243}{y} \) 1.1.2: \( \frac{2 x^{7}}{y^{5}} \)