Pregunta
upstudy study bank question image url

Solve \( \ln x+\ln (x-2)=5 \). Round your answer to the nearest hundredth. Check for extraneous solutions.

Ask by Gibson Carter. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is approximately \( x = 13.22 \).

Solución

To solve the equation \( \ln x + \ln (x - 2) = 5 \), follow these steps: 1. **Combine the Logarithms:** \[ \ln x + \ln (x - 2) = \ln [x(x - 2)] = 5 \] 2. **Exponentiate Both Sides:** \[ x(x - 2) = e^5 \] 3. **Expand and Rearrange the Equation:** \[ x^2 - 2x - e^5 = 0 \] 4. **Apply the Quadratic Formula:** \[ x = \frac{2 \pm \sqrt{4 + 4e^5}}{2} = 1 \pm \sqrt{1 + e^5} \] 5. **Calculate \( e^5 \):** \[ e^5 \approx 148.4131591 \] \[ 1 + e^5 \approx 149.4131591 \] \[ \sqrt{149.4131591} \approx 12.224 \] 6. **Determine the Possible Solutions:** \[ x \approx 1 + 12.224 = 13.224 \quad \text{or} \quad x \approx 1 - 12.224 = -11.224 \] 7. **Check for Extraneous Solutions:** - The logarithm functions require \( x > 0 \) and \( x - 2 > 0 \), so \( x > 2 \). - Thus, \( x \approx -11.224 \) is extraneous and discarded. 8. **Final Solution:** \[ x \approx 13.22 \quad \text{(rounded to the nearest hundredth)} \] 9. **Verification:** \[ \ln(13.22) + \ln(11.22) \approx 2.583 + 2.417 = 5.000 \] The solution satisfies the original equation. **Answer:** After simplifying, the solution is approximately 13.22.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( \ln x + \ln (x-2) = 5 \), we can use the property of logarithms that states \( \ln a + \ln b = \ln (a \cdot b) \). Hence, we can rewrite the equation as: \[ \ln (x(x-2)) = 5 \] Next, we can exponentiate both sides to eliminate the logarithm: \[ x(x-2) = e^5 \] This simplifies to: \[ x^2 - 2x = e^5 \] Rearranging this gives us a quadratic equation: \[ x^2 - 2x - e^5 = 0 \] We can solve for \(x\) using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = 1\), \(b = -2\), and \(c = -e^5\): \[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-e^5)}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{2 \pm \sqrt{4 + 4e^5}}{2} \] \[ x = 1 \pm \sqrt{1 + e^5} \] Calculating \(e^5\) using its approximate value of \(148.413\): \[ 1 + e^5 \approx 149.413 \] Taking the square root: \[ \sqrt{149.413} \approx 12.22 \] Thus the possible solutions for \(x\) are: \[ x = 1 + 12.22 \approx 13.22 \] \[ x = 1 - 12.22 \approx -11.22 \quad \text{(not valid since } x \text{ must be greater than 2)} \] This gives us one valid solution: \[ x \approx 13.22 \] Lastly, we check for extraneous solutions. We need to ensure \(x > 2\). Since \( x = 13.22 \), this is greater than 2, which is valid. Rounding to the nearest hundredth, the final answer is: \[ \boxed{13.22} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad