Pregunta
upstudy study bank question image url

Class problem \( \# 10 \) proetice: Michael decided to enroll in a reading course that allegedly increases reading speed. Prior to enrolling in the class, Michael read 198 words per minute (wpm). The following data represent the words per minute read for 10 different passages read after the course: \[ 206 \quad 217 \quad 197 \quad 199 \quad 210 \quad 210 \quad 197 \quad 212 \quad 227 \quad 209 \] \( \begin{array}{l}\text { At the } \alpha=0.1 \text { level of significance, determine the P-value and use it to decide if the } \\ \text { class was effective. }\end{array} \)

Ask by Huff Chavez. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The P-value is approximately 0.002, which is less than the significance level of 0.1. Therefore, we reject the null hypothesis and conclude that the reading course was effective in increasing Michael's reading speed.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To determine if the class was effective in increasing Michael's reading speed, we can perform a hypothesis test. Our null hypothesis \( H_0 \) states that there is no increase in reading speed, meaning the population mean reading speed after the class is equal to or less than 198 wpm. The alternative hypothesis \( H_a \) asserts that the population mean is greater than 198 wpm. 1. **Calculate the sample mean and sample standard deviation:** - The words per minute (wpm) data is: \( 206, 217, 197, 199, 210, 210, 197, 212, 227, 209 \). - The sample mean \( \bar{x} = \frac{206 + 217 + 197 + 199 + 210 + 210 + 197 + 212 + 227 + 209}{10} = \frac{2094}{10} = 209.4 \). - The sample standard deviation \( s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \). 2. **Sum of squared deviations:** - Calculate \( (x_i - \bar{x})^2 \) for each observation: - \( (206 - 209.4)^2 = 11.56 \) - \( (217 - 209.4)^2 = 57.76 \) - \( (197 - 209.4)^2 = 156.76 \) - \( (199 - 209.4)^2 = 108.16 \) - \( (210 - 209.4)^2 = 0.36 \) - \( (210 - 209.4)^2 = 0.36 \) - \( (197 - 209.4)^2 = 156.76 \) - \( (212 - 209.4)^2 = 6.76 \) - \( (227 - 209.4)^2 = 306.76 \) - \( (209 - 209.4)^2 = 0.16 \) - Total = \( 11.56 + 57.76 + 156.76 + 108.16 + 0.36 + 0.36 + 156.76 + 6.76 + 306.76 + 0.16 = 499.4 \). - Now calculate the sample standard deviation: \[ s = \sqrt{\frac{499.4}{9}} \approx 7.46 \] 3. **Calculate the t-statistic:** - The t-statistic is determined using: \[ t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \] Here, \( \mu_0 = 198 \), \( n = 10 \). \[ t = \frac{209.4 - 198}{7.46 / \sqrt{10}} \approx \frac{11.4}{2.36} \approx 4.83 \] 4. **Determine the P-value:** - With \( n - 1 = 9 \) degrees of freedom, we can look up the t-distribution table or use technology to find the P-value for \( t = 4.83 \). The P-value will be very small. 5. **Decision:** - Compare the P-value to the significance level \( \alpha = 0.1 \): - If P-value < 0.1, we reject \( H_0 \). - Given the calculated t-statistic, the P-value is extremely small (close to 0), which is less than 0.1. Therefore, we reject the null hypothesis. **Conclusion:** At the 0.1 level of significance, there is sufficient evidence to conclude that the reading course was effective in increasing Michael's reading speed.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad