Pregunta
upstudy study bank question image url

8. A ball rolls down an inclined track and gains speed. If the distance the ball travels is 3 cm in the first second, 6 cm in the second, 9 cm in the third, and so on, find the total distance travelled in 15 seconds. ( 3 marks) 9. A superball bounces to \( \frac{3}{4} \) of its initial height when dropped on pavement. If the ball is dropped from a height of 16 m , how far has the ball travelled by the!time it hits the (4 marks) (4) for the \( 6^{\text {th }} \) time?

Ask by Edwards Vargas. in Canada
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Question 8:** The ball travels a total of **360 cm** in 15 seconds. **Question 9:** By the 6th hit, the ball has traveled approximately **89.219 meters**.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

The pattern of the ball's distance traveled can be seen as an arithmetic sequence where the distance increases by 3 cm every second. To find the total distance traveled in 15 seconds, we can sum the distances of each second. The formula for the sum of an arithmetic series is \( S_n = \frac{n}{2} (a + l) \), where \( n \) is the number of terms, \( a \) is the first term, and \( l \) is the last term. Here, \( n = 15 \), \( a = 3 \), and \( l = 3 + 3(15 - 1) = 45 \). Thus, \( S_{15} = \frac{15}{2} (3 + 45) = \frac{15}{2} (48) = 360 \) cm. Now, for the superball, the distance traveled includes the drop and the subsequent bounces. The ball drops 16 m initially, and then for each bounce, it ascends to \( \frac{3}{4} \) of the previous height. The total distance when it hits the ground for the \( 6^{th} \) time will comprise the descending and ascending distances. The heights will be 16 m, \( 16 \times \frac{3}{4} \), \( 16 \times \left(\frac{3}{4}\right)^2 \), and so on, for a total of 6 bounces. This gives a distance of \( 16 + 2 \times \sum_{k=0}^{5} 16 \left(\frac{3}{4}\right)^k \). Using the geometric series formula \( S_n = a \frac{1 - r^n}{1 - r} \) for the heights of the bounces, the final distance can be calculated as \( 16 + 2 \times 16 \frac{1 - \left(\frac{3}{4}\right)^6}{1 - \frac{3}{4}} \).

preguntas relacionadas

Acceleration Problems: 1. Acceleration is the rate at which what changes? Velocity 2. What is the acceleration of a car moving in a straight-line path that travels at constant speed of \( 100 \mathrm{~km} / \mathrm{h} \) ? \[ a=0 \mathrm{~m} / \mathrm{s}^{2} \] 3. What is the acceleration of a car moving in a straight-line path that increases it speed from rest to \( 100 \mathrm{~km} / \mathrm{h} \) in 0.2 hrs ? \[ 0.0586 \mathrm{~m} / \mathrm{s}^{2} \] 4. Light travels in a straight line at a constant speed of \( 300,000 \mathrm{~km} / \mathrm{s} \). What would the acceleration of light 3 seconds later? \[ 0 \mathrm{~m} / \mathrm{s}^{2} \] 5. A dragster going at \( 15 \mathrm{~m} / \mathrm{s} \) north increases its velocity to \( 25 \mathrm{~m} / \mathrm{s} \) north in 4 seconds. What's its acceleration during that time interval? \[ 2.3 \mathrm{~m} / \mathrm{s}^{2} \] 6. A car going \( 30 \mathrm{~m} / \mathrm{s} \) undergoes an acceleration of \( 2 \mathrm{~m} / \mathrm{s}^{2} \) for 4 seconds. What is its final speed? \[ 38 \mathrm{~m} / \mathrm{s} \] 7. A man on a unicycle pedals for 2 seconds at a speed of \( 6 \mathrm{~m} / \mathrm{s} \) and then pedals another 2 seconds at a rate of \( 6 \mathrm{~m} / \mathrm{s} \). What is the acceleration of the cyclist? \[ 0 \mathrm{~m} / \mathrm{s}^{2} \] 8. If a Porsche accelerates at a rate of \( 25 \mathrm{~km} / \mathrm{h}^{*} \mathrm{~s} \) and goes from rest to \( 125 \mathrm{~km} / \mathrm{hr} \). How long did it take the car to reach its final speed? 5 seconas 9. If a car is traveling at \( 35 \mathrm{~m} / \mathrm{s} \) and the driver sees a deer and slams on her brakes to come to stop in 5 seconds, what is her rate of acceleration? \( -7 \mathrm{mi} \mathrm{s}^{2} \) 10. A rocket decelerates at a rate of \( 5 \mathrm{~m} / \mathrm{s}^{2} \). If the initial velocity of the rocket was \( 200 \mathrm{~m} / \mathrm{s} \), how fast would the rocket be traveling 20 seconds later? How long will it take before the rocket . comes to a stop? Uo seconde Acceleration Calculations
27. กำหนดให้ ความเร งโน้มถ่วงที่พื้นผิวดาวเคราะห์ A เท่ากับ 3 เมตรต่อวินาที \( { }^{2} \) ความเ งโน้มถ่วงที่พื้นคิวดาวเคราะห์ B เท่ากับ 1 เมตรต่อวินาที \( { }^{2} \) ถ้าชั่งน้ำหนักของวัง จมวล 2 กิโลกรัม บนพื้ผิวดาวเคราะพ์ทั้งสอง น้ำหนักของวัตฮุ แ ดาวดวงใด มีค่ามากกว่ากัน เส. มากกว่ากันเท่าใด 1. น้ำหนักของวัตร บนดาวเคราะห์ \( A \) มากกว่า และมากกว่า 2 นิวตัน 2. นำหนักของวัตกบาเดาวเดราะห์ A มากกว่า และมากกว่า 4 นิวตัน 3. นำหนักของวัต؟ แนดาวเตราะห์ \( B \) มากกว่า และมากกว่า 2 นิวตัน 4. น้ำหนักของวัตร นนดาวเคราะห์ \( B \) มากกว่า เะละมากกว่า 4 นิวตัน 5. น้ำหนักของวัตก บนตาวเคราะห์ A และ B เท่ากัน
Física Thailand Jan 24, 2025

Latest Physics Questions

Acceleration Problems: 1. Acceleration is the rate at which what changes? Velocity 2. What is the acceleration of a car moving in a straight-line path that travels at constant speed of \( 100 \mathrm{~km} / \mathrm{h} \) ? \[ a=0 \mathrm{~m} / \mathrm{s}^{2} \] 3. What is the acceleration of a car moving in a straight-line path that increases it speed from rest to \( 100 \mathrm{~km} / \mathrm{h} \) in 0.2 hrs ? \[ 0.0586 \mathrm{~m} / \mathrm{s}^{2} \] 4. Light travels in a straight line at a constant speed of \( 300,000 \mathrm{~km} / \mathrm{s} \). What would the acceleration of light 3 seconds later? \[ 0 \mathrm{~m} / \mathrm{s}^{2} \] 5. A dragster going at \( 15 \mathrm{~m} / \mathrm{s} \) north increases its velocity to \( 25 \mathrm{~m} / \mathrm{s} \) north in 4 seconds. What's its acceleration during that time interval? \[ 2.3 \mathrm{~m} / \mathrm{s}^{2} \] 6. A car going \( 30 \mathrm{~m} / \mathrm{s} \) undergoes an acceleration of \( 2 \mathrm{~m} / \mathrm{s}^{2} \) for 4 seconds. What is its final speed? \[ 38 \mathrm{~m} / \mathrm{s} \] 7. A man on a unicycle pedals for 2 seconds at a speed of \( 6 \mathrm{~m} / \mathrm{s} \) and then pedals another 2 seconds at a rate of \( 6 \mathrm{~m} / \mathrm{s} \). What is the acceleration of the cyclist? \[ 0 \mathrm{~m} / \mathrm{s}^{2} \] 8. If a Porsche accelerates at a rate of \( 25 \mathrm{~km} / \mathrm{h}^{*} \mathrm{~s} \) and goes from rest to \( 125 \mathrm{~km} / \mathrm{hr} \). How long did it take the car to reach its final speed? 5 seconas 9. If a car is traveling at \( 35 \mathrm{~m} / \mathrm{s} \) and the driver sees a deer and slams on her brakes to come to stop in 5 seconds, what is her rate of acceleration? \( -7 \mathrm{mi} \mathrm{s}^{2} \) 10. A rocket decelerates at a rate of \( 5 \mathrm{~m} / \mathrm{s}^{2} \). If the initial velocity of the rocket was \( 200 \mathrm{~m} / \mathrm{s} \), how fast would the rocket be traveling 20 seconds later? How long will it take before the rocket . comes to a stop? Uo seconde Acceleration Calculations
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad