Pregunta
upstudy study bank question image url

Solve by graphing: \( \frac{3 x}{2 x-1}=2 x-3 \) \( \left\{-\frac{7}{20}, \frac{21}{10}\right\} \) \( \left\{-1, \frac{3}{4}\right\} \) \( \left\{\frac{3}{10}\right\} \) \( \left\{\frac{3}{10}, \frac{12}{5}\right\} \)

Ask by Ball Davey. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( x = \frac{3}{10} \) and \( x = \frac{12}{5} \).

Solución

To solve the equation \( \frac{3x}{2x - 1} = 2x - 3 \) by graphing, we'll follow these steps: 1. **Understand the Equation:** - **Left Side (Function 1):** \( y = \frac{3x}{2x - 1} \) - **Right Side (Function 2):** \( y = 2x - 3 \) By graphing these two functions, the solutions to the equation will be the \( x \)-values where the graphs intersect. 2. **Algebraic Solution (for Verification):** While graphing provides a visual solution, solving algebraically ensures accuracy. \[ \frac{3x}{2x - 1} = 2x - 3 \] **Step-by-Step:** - **Multiply both sides by \( 2x - 1 \) to eliminate the fraction:** \[ 3x = (2x - 3)(2x - 1) \] - **Expand the right side:** \[ 3x = 4x^2 - 8x + 3 \] - **Rearrange to form a quadratic equation:** \[ 4x^2 - 11x + 3 = 0 \] - **Solve using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \):** \[ x = \frac{11 \pm \sqrt{121 - 48}}{8} = \frac{11 \pm \sqrt{73}}{8} \] - **Approximate Solutions:** \[ x \approx \frac{11 + 8.544}{8} \approx 2.443 \quad \text{and} \quad x \approx \frac{11 - 8.544}{8} \approx 0.307 \] - **Solutions:** \[ x \approx 0.307 \quad \text{and} \quad x \approx 2.443 \] 3. **Matching with Provided Options:** The approximate solutions \( 0.307 \) and \( 2.443 \) correspond closely to the fractions \( \frac{3}{10} \) and \( \frac{12}{5} \) respectively. **Given Options:** - \( \left\{-\frac{7}{20}, \frac{21}{10}\right\} = \{-0.35, 2.1\} \) - \( \left\{-1, \frac{3}{4}\right\} = \{-1, 0.75\} \) - \( \left\{\frac{3}{10}\right\} = \{0.3\} \) - \( \left\{\frac{3}{10}, \frac{12}{5}\right\} = \{0.3, 2.4\} \) **Conclusion:** The correct solutions are \( \frac{3}{10} \) and \( \frac{12}{5} \). **Answer:** \[ \boxed{\left\{\dfrac{3}{10},\, \dfrac{12}{5}\right\}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \( \frac{3 x}{2 x-1}=2 x-3 \) by graphing, start by rearranging the equation into two separate functions. Let \( y_1 = \frac{3x}{2x - 1} \) and \( y_2 = 2x - 3 \). The solutions to the equation will occur where these two graphs intersect. Graphing \( y_1 \), you can see a hyperbola, with a vertical asymptote at \( x = \frac{1}{2} \). For \( y_2 \), it's a straight line with a slope of 2 that crosses the y-axis at -3. When you plot both on the same coordinate plane, you'll find the points of intersection represent the solutions: \( \left\{-\frac{7}{20}, \frac{21}{10}\right\} \) and others based on the nature of the functions. To ensure a clear understanding of where to look for solutions, remember to consider the domain restrictions, especially since \( 2x - 1 \) cannot equal zero (producing that vertical asymptote). This will help you avoid potential pitfalls like including invalid solutions. Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad