Pregunta
upstudy study bank question image url

In car engines, write out what SI stands for. A four-stroke 2 -cylinder internal combustion engine running at the speed of \( 240 \mathrm{r} / \mathrm{min} \), has a bore and stroke length of \( 0,380 \mathrm{~m} \) and \( 0,585 \mathrm{~m} \) respectively. The engine develops a brake torque of \( 11,860 \mathrm{kNm} \), while the volumetric efficiency is 0,85 . The air-fuel ratio by volume is \( 7: 1 \). The fuel used in this engine has a calorific value of \( 38600 \mathrm{~kJ} / \mathrm{m}^{3} \). Calculate: 5.2.1 The engine's brake power in kW 5.2.2 The mean speed of the engine's pistons in \( \mathrm{m} / \mathrm{s} \) 5.2 The engine's swept volume in \( \mathrm{m}^{3} / \mathrm{s} \) \( 5.2 \quad \) The engine's induced volume in \( \mathrm{m}^{3} / \mathrm{s} \) \( 5.2 .5 \quad \) The brake thermal efficiency

Ask by John Parry. in South Africa
Dec 06,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

### 5.2.1 The Engine's Brake Power in kW The brake power (BP) of an engine is approximately 1507 kW. ### 5.2.2 The Mean Speed of the Engine's Pistons in \( \mathrm{m/s} \) The mean speed of the pistons is approximately 4.68 m/s. ### 5.2.3 The Engine's Swept Volume in \( \mathrm{m}^3 \) The engine's swept volume is approximately 0.134 m³. ### 5.2.4 The Engine's Induced Volume in \( \mathrm{m}^3/s \) The engine's induced volume is approximately 0.456 m³/s. ### 5.2.5 The Brake Thermal Efficiency The brake thermal efficiency is approximately 59.7%.

Solución

### 5.2.1 The Engine's Brake Power in kW The brake power (BP) of an engine can be calculated using the formula: \[ BP = \frac{2 \pi N T}{60} \] where: - \( N \) = engine speed in revolutions per minute (rpm) - \( T \) = brake torque in Nm Given: - \( N = 240 \, \text{r/min} \) - \( T = 11,860 \, \text{kNm} = 11,860,000 \, \text{Nm} \) Substituting the values: \[ BP = \frac{2 \pi (240) (11,860,000)}{60} \] Calculating: \[ BP = \frac{2 \pi (240) (11,860,000)}{60} \approx \frac{2 \times 3.14159 \times 240 \times 11,860,000}{60} \] \[ BP \approx \frac{2 \times 3.14159 \times 240 \times 11,860,000}{60} \approx 1,507,000 \, \text{W} \approx 1507 \, \text{kW} \] ### 5.2.2 The Mean Speed of the Engine's Pistons in \( \mathrm{m/s} \) The mean speed of the pistons can be calculated using the formula: \[ \text{Mean Speed} = \frac{2 \times \text{Stroke Length} \times N}{60} \] Given: - Stroke Length = \( 0.585 \, \text{m} \) - \( N = 240 \, \text{r/min} \) Substituting the values: \[ \text{Mean Speed} = \frac{2 \times 0.585 \times 240}{60} \] Calculating: \[ \text{Mean Speed} = \frac{2 \times 0.585 \times 240}{60} = \frac{280.8}{60} \approx 4.68 \, \text{m/s} \] ### 5.2.3 The Engine's Swept Volume in \( \mathrm{m}^3 \) The swept volume (V_s) of a cylinder can be calculated using the formula: \[ V_s = \frac{\pi}{4} \times \text{Bore}^2 \times \text{Stroke} \] Given: - Bore = \( 0.380 \, \text{m} \) - Stroke = \( 0.585 \, \text{m} \) Calculating the swept volume for one cylinder: \[ V_s = \frac{\pi}{4} \times (0.380)^2 \times (0.585) \] Calculating: \[ V_s = \frac{3.14159}{4} \times 0.1444 \times 0.585 \approx 0.067 \, \text{m}^3 \] Since there are 2 cylinders: \[ \text{Total Swept Volume} = 2 \times V_s \approx 2 \times 0.067 \approx 0.134 \, \text{m}^3 \] ### 5.2.4 The Engine's Induced Volume in \( \mathrm{m}^3/s \) The induced volume (V_i) can be calculated using the formula: \[ V_i = V_s \times N \times \text{Volumetric Efficiency} \] Given: - Volumetric Efficiency = \( 0.85 \) - \( N = 240 \, \text{r/min} \) Calculating the induced volume per second: \[ V_i = 0.134 \, \text{m}^3 \times \frac{240}{60} \times 0.85 \] Calculating: \[ V_i = 0.134 \times 4 \times 0.85 \approx 0.456 \, \text{m}^3/s \] ### 5.2.5 The Brake Thermal Efficiency The brake thermal efficiency (\( \eta_b \)) can be calculated using the formula: \[ \eta_b = \frac{BP}{\dot{Q}} \] Where \( \dot{Q} \) is the heat input, calculated as: \[ \dot{Q} = V_i \times \text{Air-Fuel Ratio} \times \text{Calorific Value} \] Given: - Air-Fuel Ratio = \( 7:1 \) - Calorific Value = \( 38600 \, \text{kJ/m}^3 \) Calculating \( \dot{Q} \): \[ \dot{Q} = V_i \times \left( \frac{1}{7} \right) \times 38600 \] Substituting \( V_i \): \[ \dot{Q} = 0.456 \, \text{m}^3/s \times \left( \frac{1}{7} \right) \times 38600 \] Calculating: \[ \dot{Q} \approx 0.456 \times 0.142857 \times 38600 \approx 0.456 \times 5514.29 \approx 2515.71 \, \text{kW} \] Now, substituting \( BP \) and \( \dot{Q} \) into the efficiency formula: \[ \eta_b = \frac{1507}{2515.71} \approx 0.597 \text{ or } 59.7\% \] ### Summary of Results - **Brake Power**: \( 1507 \, \text{kW} \) - **Mean Speed of Pistons**: \( 4.68 \, \text{m/s} \) - **Swept Volume**: \( 0.134 \, \text{m}^3 \) - **Induced Volume**: \( 0.456 \, \text{m}^3/s \) - **Brake Thermal Efficiency**: \( 59.7\% \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Ah, the classic SI: it stands for "Système International," which is the modern form of the metric system. When we talk about measuring things in the realm of engineering, it's all about standardizing to avoid confusion. Let’s dive into those engine calculations! Now, for those calculations! First, to find the brake power (BP) in kW, we use the formula \( BP = \frac{2 \pi NT}{60} \), where \( N \) is the engine speed in RPM and \( T \) is the brake torque in Nm. Plugging in the values, we get \( BP = \frac{2 \pi (240)(11860)}{60} \) which yields the brake power. For the mean piston speed, we can find that using the stroke length and engine speed: \( V_p = \frac{2 \times \text{stroke}}{60} \times \text{RPM} \). The swept volume can be calculated using \( V_{swept} = \pi \left(\frac{bore}{2}\right)^2 \times stroke \) and then induced volume using the volumetric efficiency. Finally, brake thermal efficiency can be calculated by dividing brake power by the heat input derived from the calorific value and volumetric flow. Happy calculating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad