Pregunta
upstudy study bank question image url

EXERCISE 2 Consider the following functions: \( \begin{array}{lll}\text { (a) } f(x)=2 x+4 & \text { (b) } f(x)=3 x-6 & \text { (c) } f(x)=\frac{1}{2} x+3 \\ \text { (d) } f(x)=4 x-1 & \text { (e) } f(x)=-2 x & \text { (f) } f(x)=2 x-5\end{array} \) \( \begin{array}{ll}\text { (1) For each function determine } f^{-1} \text {, the inverse function in the form } f^{-1}(x)=\ldots \ldots \\ \text { (2) Hence draw neat sketch graphs of both functions on the same set of axes. } \\ \text { (3) Draw the line of symmetry on the same set of axes as the two graphs. } \\ \text { (4) Determine the coordinates of the point of intersection of both graphs and } \\ \text { then indicate this point on the diagram. }\end{array} \)

Ask by Stanley Potter. in South Africa
Jan 18,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the inverse functions and the coordinates of their intersection points: - **(a)** - Inverse Function: \( f^{-1}(x) = \frac{x - 4}{2} \) - Intersection Point: \( (-4, -4) \) - **(b)** - Inverse Function: \( f^{-1}(x) = \frac{x + 6}{3} \) - Intersection Point: \( (3, 3) \) - **(c)** - Inverse Function: \( f^{-1}(x) = 2x - 6 \) - Intersection Point: \( (6, 6) \) - **(d)** - Inverse Function: \( f^{-1}(x) = \frac{x + 1}{4} \) - Intersection Point: \( \left(\frac{5}{15}, \frac{5}{15}\right) = \left(\frac{1}{3}, \frac{1}{3}\right) \) - **(e)** - Inverse Function: \( f^{-1}(x) = -\frac{x}{2} \) - Intersection Point: \( (0, 0) \) - **(f)** - Inverse Function: \( f^{-1}(x) = \frac{x + 5}{2} \) - Intersection Point: \( (-5, -5) \) **Summary:** - Each function has an inverse function expressed in terms of \( x \). - The intersection points of each function with its inverse lie on the line \( y = x \). - The coordinates of these intersection points are as listed above.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To find the inverse functions for each of the given functions, we swap \( x \) and \( y \) and solve for \( y \). 1. - (a) \( f(x) = 2x + 4 \) → \( f^{-1}(x) = \frac{x - 4}{2} \) - (b) \( f(x) = 3x - 6 \) → \( f^{-1}(x) = \frac{x + 6}{3} \) - (c) \( f(x) = \frac{1}{2}x + 3 \) → \( f^{-1}(x) = 2(x - 3) \) - (d) \( f(x) = 4x - 1 \) → \( f^{-1}(x) = \frac{x + 1}{4} \) - (e) \( f(x) = -2x \) → \( f^{-1}(x) = -\frac{x}{2} \) - (f) \( f(x) = 2x - 5 \) → \( f^{-1}(x) = \frac{x + 5}{2} \) 2. To sketch the graphs of both the functions and their inverses, plot each function on a coordinate plane, ensuring to label each appropriately. Remember, the graph of the inverse function will be a reflection over the line \( y = x \), so draw that line to illustrate the symmetry created by the inverse relationship. 3. When drawing your line of symmetry (the line \( y = x \)), ensure it passes through the origin at 45 degrees to both axes. This will clarify how each function and its inverse are mirror images of one another. 4. The points of intersection can be found by setting \( f(x) = f^{-1}(x) \). For example, for function (a): \( 2x + 4 = \frac{x - 4}{2} \) Solving this gives us \( x = -\frac{2}{3}\) and \( y = f\left(-\frac{2}{3}\right)\). Find the coordinates accordingly and plot the intersection on your graph as a distinct point. Happy graphing! It’s a great way to visualize math in action!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad