EXERCISE 2 Consider the following functions: \( \begin{array}{lll}\text { (a) } f(x)=2 x+4 & \text { (b) } f(x)=3 x-6 & \text { (c) } f(x)=\frac{1}{2} x+3 \\ \text { (d) } f(x)=4 x-1 & \text { (e) } f(x)=-2 x & \text { (f) } f(x)=2 x-5\end{array} \) \( \begin{array}{ll}\text { (1) For each function determine } f^{-1} \text {, the inverse function in the form } f^{-1}(x)=\ldots \ldots \\ \text { (2) Hence draw neat sketch graphs of both functions on the same set of axes. } \\ \text { (3) Draw the line of symmetry on the same set of axes as the two graphs. } \\ \text { (4) Determine the coordinates of the point of intersection of both graphs and } \\ \text { then indicate this point on the diagram. }\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the inverse functions for each of the given functions, we swap \( x \) and \( y \) and solve for \( y \). 1. - (a) \( f(x) = 2x + 4 \) → \( f^{-1}(x) = \frac{x - 4}{2} \) - (b) \( f(x) = 3x - 6 \) → \( f^{-1}(x) = \frac{x + 6}{3} \) - (c) \( f(x) = \frac{1}{2}x + 3 \) → \( f^{-1}(x) = 2(x - 3) \) - (d) \( f(x) = 4x - 1 \) → \( f^{-1}(x) = \frac{x + 1}{4} \) - (e) \( f(x) = -2x \) → \( f^{-1}(x) = -\frac{x}{2} \) - (f) \( f(x) = 2x - 5 \) → \( f^{-1}(x) = \frac{x + 5}{2} \) 2. To sketch the graphs of both the functions and their inverses, plot each function on a coordinate plane, ensuring to label each appropriately. Remember, the graph of the inverse function will be a reflection over the line \( y = x \), so draw that line to illustrate the symmetry created by the inverse relationship. 3. When drawing your line of symmetry (the line \( y = x \)), ensure it passes through the origin at 45 degrees to both axes. This will clarify how each function and its inverse are mirror images of one another. 4. The points of intersection can be found by setting \( f(x) = f^{-1}(x) \). For example, for function (a): \( 2x + 4 = \frac{x - 4}{2} \) Solving this gives us \( x = -\frac{2}{3}\) and \( y = f\left(-\frac{2}{3}\right)\). Find the coordinates accordingly and plot the intersection on your graph as a distinct point. Happy graphing! It’s a great way to visualize math in action!