Responder
Here are the simplified forms of the given logarithmic expressions:
1. \( \log \left(2^{2} \cdot 3\right)^{6} = 12\,\log 2\,+\,6\,\log 3 \)
2. \( \log _{4}\left(x \cdot y \cdot z^{4}\right) = \log_4 x\,+\,\log_4 y\,+\,4\,\log_4 z \)
3. \( 5 \log _{3} a + 25 \log _{3} b = \log_3 (a^{5}b^{25}) \)
4. \( 5 \log _{8} 5 - 30 \log _{8} 12 = \log_8 \left(\dfrac{5^{5}}{12^{30}}\right) \)
5. \( 10 \log _{9} a + 5 \log _{9} b = \log_9 (a^{10}b^{5}) \)
6. \( 3 \log _{3} a - 18 \log _{3} b = \log_3 \left(\dfrac{a^{3}}{b^{18}}\right) \)
Solución
Sure, let's simplify each of the given logarithmic expressions using logarithm properties such as the **Product Rule**, **Quotient Rule**, and **Power Rule**.
### 10) \( \log \left(2^{2} \cdot 3\right)^{6} \)
**Step-by-Step Simplification:**
1. **Apply the Power Rule:** \(\log (A^k) = k \log A\)
\[
\log \left(2^{2} \cdot 3\right)^{6} = 6 \log (2^{2} \cdot 3)
\]
2. **Use the Product Rule:** \(\log (AB) = \log A + \log B\)
\[
6 \left(\log 2^{2} + \log 3\right)
\]
3. **Apply the Power Rule Again:**
\[
6 \left(2 \log 2 + \log 3\right) = 12 \log 2 + 6 \log 3
\]
**Final Simplified Form:**
\[
\boxed{12\,\log 2\,+\,6\,\log 3}
\]
---
### 12) \( \log _{4}\left(x \cdot y \cdot z^{4}\right) \)
**Step-by-Step Simplification:**
1. **Use the Product Rule:**
\[
\log_4 (x) + \log_4 (y) + \log_4 (z^{4})
\]
2. **Apply the Power Rule:**
\[
\log_4 x + \log_4 y + 4 \log_4 z
\]
**Final Simplified Form:**
\[
\boxed{\log_4 x\,+\,\log_4 y\,+\,4\,\log_4 z}
\]
---
### 14) \( 5 \log _{3} a + 25 \log _{3} b \)
**Step-by-Step Simplification:**
1. **Apply the Power Rule to each term:**
\[
\log_3 a^{5} + \log_3 b^{25}
\]
2. **Use the Product Rule:**
\[
\log_3 (a^{5} \cdot b^{25})
\]
**Final Simplified Form:**
\[
\boxed{\log_3 (a^{5}b^{25})}
\]
---
### 20) \( 5 \log _{8} 5 - 30 \log _{8} 12 \)
**Step-by-Step Simplification:**
1. **Apply the Power Rule to each term:**
\[
\log_8 5^{5} - \log_8 12^{30}
\]
2. **Use the Quotient Rule:** \(\log_b A - \log_b C = \log_b \left(\frac{A}{C}\right)\)
\[
\log_8 \left( \frac{5^{5}}{12^{30}} \right)
\]
**Final Simplified Form:**
\[
\boxed{\log_8 \left(\dfrac{5^{5}}{12^{30}}\right)}
\]
---
### 18) \( 10 \log _{9} a + 5 \log _{9} b \)
**Step-by-Step Simplification:**
1. **Apply the Power Rule to each term:**
\[
\log_9 a^{10} + \log_9 b^{5}
\]
2. **Use the Product Rule:**
\[
\log_9 (a^{10} \cdot b^{5})
\]
**Final Simplified Form:**
\[
\boxed{\log_9 (a^{10}b^{5})}
\]
---
### 16) \( 3 \log _{3} a - 18 \log _{3} b \)
**Step-by-Step Simplification:**
1. **Apply the Power Rule to each term:**
\[
\log_3 a^{3} - \log_3 b^{18}
\]
2. **Use the Quotient Rule:**
\[
\log_3 \left( \frac{a^{3}}{b^{18}} \right)
\]
**Final Simplified Form:**
\[
\boxed{\log_3 \left(\dfrac{a^{3}}{b^{18}}\right)}
\]
---
Each expression has been simplified using fundamental logarithmic properties. If you have any further questions or need additional explanations, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución