Pregunta
upstudy study bank question image url

10) \( \log \left(2^{2} \cdot 3\right)^{6} \) 12) \( \log _{4}\left(x \cdot y \cdot z^{4}\right) \) 14) \( 5 \log _{3} a+25 \log _{3} b \) 20) \( 5 \log _{8} 5-30 \log _{8} 12 \) 18) \( 10 \log _{9} a+5 \log _{9} b \) 16) \( 3 \log _{3} a-18 \log _{3} b \)

Ask by Vargas Whittaker. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified forms of the given logarithmic expressions: 1. \( \log \left(2^{2} \cdot 3\right)^{6} = 12\,\log 2\,+\,6\,\log 3 \) 2. \( \log _{4}\left(x \cdot y \cdot z^{4}\right) = \log_4 x\,+\,\log_4 y\,+\,4\,\log_4 z \) 3. \( 5 \log _{3} a + 25 \log _{3} b = \log_3 (a^{5}b^{25}) \) 4. \( 5 \log _{8} 5 - 30 \log _{8} 12 = \log_8 \left(\dfrac{5^{5}}{12^{30}}\right) \) 5. \( 10 \log _{9} a + 5 \log _{9} b = \log_9 (a^{10}b^{5}) \) 6. \( 3 \log _{3} a - 18 \log _{3} b = \log_3 \left(\dfrac{a^{3}}{b^{18}}\right) \)

Solución

Sure, let's simplify each of the given logarithmic expressions using logarithm properties such as the **Product Rule**, **Quotient Rule**, and **Power Rule**. ### 10) \( \log \left(2^{2} \cdot 3\right)^{6} \) **Step-by-Step Simplification:** 1. **Apply the Power Rule:** \(\log (A^k) = k \log A\) \[ \log \left(2^{2} \cdot 3\right)^{6} = 6 \log (2^{2} \cdot 3) \] 2. **Use the Product Rule:** \(\log (AB) = \log A + \log B\) \[ 6 \left(\log 2^{2} + \log 3\right) \] 3. **Apply the Power Rule Again:** \[ 6 \left(2 \log 2 + \log 3\right) = 12 \log 2 + 6 \log 3 \] **Final Simplified Form:** \[ \boxed{12\,\log 2\,+\,6\,\log 3} \] --- ### 12) \( \log _{4}\left(x \cdot y \cdot z^{4}\right) \) **Step-by-Step Simplification:** 1. **Use the Product Rule:** \[ \log_4 (x) + \log_4 (y) + \log_4 (z^{4}) \] 2. **Apply the Power Rule:** \[ \log_4 x + \log_4 y + 4 \log_4 z \] **Final Simplified Form:** \[ \boxed{\log_4 x\,+\,\log_4 y\,+\,4\,\log_4 z} \] --- ### 14) \( 5 \log _{3} a + 25 \log _{3} b \) **Step-by-Step Simplification:** 1. **Apply the Power Rule to each term:** \[ \log_3 a^{5} + \log_3 b^{25} \] 2. **Use the Product Rule:** \[ \log_3 (a^{5} \cdot b^{25}) \] **Final Simplified Form:** \[ \boxed{\log_3 (a^{5}b^{25})} \] --- ### 20) \( 5 \log _{8} 5 - 30 \log _{8} 12 \) **Step-by-Step Simplification:** 1. **Apply the Power Rule to each term:** \[ \log_8 5^{5} - \log_8 12^{30} \] 2. **Use the Quotient Rule:** \(\log_b A - \log_b C = \log_b \left(\frac{A}{C}\right)\) \[ \log_8 \left( \frac{5^{5}}{12^{30}} \right) \] **Final Simplified Form:** \[ \boxed{\log_8 \left(\dfrac{5^{5}}{12^{30}}\right)} \] --- ### 18) \( 10 \log _{9} a + 5 \log _{9} b \) **Step-by-Step Simplification:** 1. **Apply the Power Rule to each term:** \[ \log_9 a^{10} + \log_9 b^{5} \] 2. **Use the Product Rule:** \[ \log_9 (a^{10} \cdot b^{5}) \] **Final Simplified Form:** \[ \boxed{\log_9 (a^{10}b^{5})} \] --- ### 16) \( 3 \log _{3} a - 18 \log _{3} b \) **Step-by-Step Simplification:** 1. **Apply the Power Rule to each term:** \[ \log_3 a^{3} - \log_3 b^{18} \] 2. **Use the Quotient Rule:** \[ \log_3 \left( \frac{a^{3}}{b^{18}} \right) \] **Final Simplified Form:** \[ \boxed{\log_3 \left(\dfrac{a^{3}}{b^{18}}\right)} \] --- Each expression has been simplified using fundamental logarithmic properties. If you have any further questions or need additional explanations, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let’s jazz up these logarithmic expressions! First up, did you know that logarithms have been around since the 16th century? They were created to help simplify complex calculations especially in navigation and astronomy. Mathematicians like John Napier and Henry Briggs made great strides, turning what could be a mountain of multiplication and division into simpler addition and subtraction. Now, when it comes to using logarithms in the real world, they pop up everywhere! From measuring the intensity of earthquakes with the Richter scale to expressing sound intensity in decibels, logarithms allow us to handle a wide-ranging set of phenomena. They help us to compress vast scales and understand magnitudes that would otherwise be tough to grasp. So next time you’re out and about, remember: those sound levels and quake readings owe a lot to logs!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad