Pregunta
upstudy study bank question image url

11. Find two mixed numbers with unlike denominators that have a sum of \( 4 \frac{5}{8} \).

Ask by Page Guzman. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Two mixed numbers with unlike denominators that add up to \( 4 \frac{5}{8} \) are \( 1 \frac{1}{2} \) and \( 3 \frac{1}{8} \).

Solución

To find two mixed numbers with **unlike denominators** that add up to \( 4 \frac{5}{8} \), let's follow these steps: ### Understanding the Problem A **mixed number** consists of a whole number and a fractional part, such as \( 2 \frac{1}{3} \). **Unlike denominators** means that the fractional parts of the two mixed numbers have different denominators (e.g., one has a denominator of 3 and the other has a denominator of 4). ### Step-by-Step Solution 1. **Express the Total Sum as an Improper Fraction:** \( 4 \frac{5}{8} = \frac{4 \times 8 + 5}{8} = \frac{37}{8} \) 2. **Choose a Whole Number for One Mixed Number:** Let's choose a whole number for one of the mixed numbers to simplify calculations. For example, let’s select \( 1 \frac{1}{2} \). 3. **Convert \( 1 \frac{1}{2} \) to an Improper Fraction:** \( 1 \frac{1}{2} = \frac{3}{2} \) 4. **Subtract This from the Total Sum to Find the Other Mixed Number:** \[ \frac{37}{8} - \frac{3}{2} = \frac{37}{8} - \frac{12}{8} = \frac{25}{8} = 3 \frac{1}{8} \] 5. **Convert \( \frac{25}{8} \) Back to a Mixed Number:** \( \frac{25}{8} = 3 \frac{1}{8} \) 6. **Verify the Denominators Are Unlike:** - \( 1 \frac{1}{2} \) has a denominator of **2**. - \( 3 \frac{1}{8} \) has a denominator of **8**. Since **2 ≠ 8**, the denominators are unlike. ### Conclusion One such pair of mixed numbers that satisfies the condition is: \[ 1 \frac{1}{2} \quad \text{and} \quad 3 \frac{1}{8} \] **Verification:** \[ 1 \frac{1}{2} + 3 \frac{1}{8} = \frac{3}{2} + \frac{25}{8} = \frac{12}{8} + \frac{25}{8} = \frac{37}{8} = 4 \frac{5}{8} \] ### Additional Example Another pair could be: \[ 2 \frac{1}{4} \quad \text{and} \quad 2 \frac{3}{8} \] **Verification:** \[ 2 \frac{1}{4} + 2 \frac{3}{8} = \frac{9}{4} + \frac{19}{8} = \frac{18}{8} + \frac{19}{8} = \frac{37}{8} = 4 \frac{5}{8} \] Both denominators (**4** and **8**) are unlike. ### Note There are infinitely many pairs of mixed numbers with unlike denominators that add up to \( 4 \frac{5}{8} \). The examples above are just two possible solutions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find two mixed numbers with unlike denominators that sum to \( 4 \frac{5}{8} \), let’s consider \( 4 \frac{1}{2} \) and \( \frac{3}{8} \). First, convert \( 4 \frac{1}{2} \) to an improper fraction: \( 4 \frac{1}{2} = \frac{9}{2} \). Then, convert \( 4 \frac{5}{8} \) to an improper fraction: \[ 4 \frac{5}{8} = \frac{37}{8} \] Now we can subtract \( \frac{3}{8} \) from \( \frac{37}{8} \): \[ \frac{37}{8} - \frac{3}{8} = \frac{34}{8} = 4 \frac{1}{4} \] So, \( 4 \frac{1}{4} \) and \( \frac{3}{8} \) are two mixed numbers that fit the bill! Need a little reminder about mixed numbers? They're just whole numbers combined with fractions—a fun way of expressing things in a less intense manner. Plus, playing with fractions can get you dealing with cooking measurements or budget tracking! It's all about simplifying and enjoying the challenge!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad