Pregunta
upstudy study bank question image url

A boat heading out to sea starts out at Point \( A \), at a horizontal distance of 815 feet from a lighthouse/the shore. From that point, the boat's crew measures the angle of elevation to the lighthouse's beacon-light to be \( 15^{\circ} \). At some later time, the crew measures the angle of elevation from point \( B \) to be \( 3^{\circ} \). Find the distance from point \( A \) to point \( B \). Round your answer to the nearest tenth of a foot if necessary.

Ask by Ball Cross. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The distance from point \( A \) to point \( B \) is approximately **3350.7 feet**.

Solución

To determine the distance from point \( A \) to point \( B \), let's analyze the situation using trigonometry. 1. **Understanding the Scenario:** - **Point \( A \):** The boat is 815 feet away from the lighthouse, and the angle of elevation to the beacon-light is \( 15^\circ \). - **Point \( B \):** The boat moves further out to sea, and the angle of elevation decreases to \( 3^\circ \). - **Goal:** Find the distance \( AB \) between points \( A \) and \( B \). 2. **Using Tangent for Angle of Elevation:** - The tangent of an angle in a right triangle is the ratio of the opposite side (height of the lighthouse, \( h \)) to the adjacent side (horizontal distance). From point \( A \): \[ \tan(15^\circ) = \frac{h}{815} \] So, \[ h = 815 \times \tan(15^\circ) \] From point \( B \): \[ \tan(3^\circ) = \frac{h}{815 + AB} \] So, \[ h = (815 + AB) \times \tan(3^\circ) \] 3. **Equating the Two Expressions for \( h \):** \[ 815 \times \tan(15^\circ) = (815 + AB) \times \tan(3^\circ) \] 4. **Solving for \( AB \):** \[ AB = \frac{815 \times (\tan(15^\circ) - \tan(3^\circ))}{\tan(3^\circ)} \] 5. **Calculating the Values:** - \(\tan(15^\circ) \approx 0.2679\) - \(\tan(3^\circ) \approx 0.05241\) Plugging these values in: \[ AB = \frac{815 \times (0.2679 - 0.05241)}{0.05241} = \frac{815 \times 0.21549}{0.05241} \approx 3350.7 \text{ feet} \] **Final Answer:** The distance from point \( A \) to point \( B \) is approximately **3350.7 feet**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the distance from point \( A \) to point \( B \), we will use trigonometry. First, we can find the height \( h \) of the lighthouse using the angle of elevation from point \( A \): \[ \tan(15^{\circ}) = \frac{h}{815} \] \[ h = 815 \cdot \tan(15^{\circ}) \approx 815 \cdot 0.2679 \approx 218.7 \text{ feet} \] Next, we use the angle of elevation from point \( B \) to find the horizontal distance \( d \) from point \( B \) to the base of the lighthouse. Again using tangent, \[ \tan(3^{\circ}) = \frac{h}{d} \] Solving for \( d \): \[ d = \frac{h}{\tan(3^{\circ})} \approx \frac{218.7}{0.0524} \approx 4161.3 \text{ feet} \] Now, to find the distance from point \( A \) to point \( B \), note that the total horizontal distance from point \( A \) to the lighthouse and then to point \( B \) is: \[ Distance_{AB} = d + 815 = 4161.3 + 815 \approx 4976.3 \text{ feet} \] To find just the distance from point \( A \) to point \( B \): \[ Distance_{AB} = d - 815 \approx 4161.3 - 815 \approx 4346.3 \text{ feet} \] Thus, rounding to the nearest tenth, the distance from point \( A \) to point \( B \) is: \[ \boxed{4346.3 \text{ feet}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad