Pregunta
upstudy study bank question image url

QUESTION 7 Suppose the following data show the prices of 4 cars with similar characteristics that sold at a recent auction (in thousands of dollars): \( 6.6,5.0,10.7,7.3 \). Calculate the standard deviation of the sample of selling prices. (please express your answer using decimal places)

Ask by Gross Weaver. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The standard deviation of the selling prices is 2.40 thousand dollars.

Solución

To calculate the **sample standard deviation** of the selling prices \( \{6.6, 5.0, 10.7, 7.3\} \) (in thousands of dollars), follow these steps: ### 1. Calculate the Sample Mean \[ \text{Mean} (\bar{x}) = \frac{6.6 + 5.0 + 10.7 + 7.3}{4} = \frac{29.6}{4} = 7.4 \] ### 2. Calculate Each Deviation from the Mean and Square It \[ \begin{align*} (6.6 - 7.4)^2 &= (-0.8)^2 = 0.64 \\ (5.0 - 7.4)^2 &= (-2.4)^2 = 5.76 \\ (10.7 - 7.4)^2 &= (3.3)^2 = 10.89 \\ (7.3 - 7.4)^2 &= (-0.1)^2 = 0.01 \\ \end{align*} \] ### 3. Sum the Squared Deviations \[ \text{Sum of squared deviations} = 0.64 + 5.76 + 10.89 + 0.01 = 17.3 \] ### 4. Calculate the Sample Variance Since we're dealing with a sample, divide by \( n-1 \) (where \( n = 4 \)): \[ \text{Variance} = \frac{17.3}{3} \approx 5.7667 \] ### 5. Calculate the Sample Standard Deviation \[ \text{Standard Deviation} = \sqrt{5.7667} \approx 2.40 \] ### **Final Answer** The standard deviation of the sample of selling prices is **2.40** thousand dollars.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the standard deviation of the sample selling prices \( 6.6, 5.0, 10.7, 7.3 \), first, find the mean (average) of the prices: \[ \text{Mean} = \frac{(6.6 + 5.0 + 10.7 + 7.3)}{4} = \frac{29.6}{4} = 7.4 \] Next, calculate the squared deviations from the mean: \((6.6 - 7.4)^2 = (-0.8)^2 = 0.64\) \((5.0 - 7.4)^2 = (-2.4)^2 = 5.76\) \((10.7 - 7.4)^2 = (3.3)^2 = 10.89\) \((7.3 - 7.4)^2 = (-0.1)^2 = 0.01\) Now, sum the squared deviations: \[ 0.64 + 5.76 + 10.89 + 0.01 = 17.30 \] Divide by \(n-1\) (where \(n\) is the number of observations, which is 4): \[ \frac{17.30}{3} = 5.77 \] Finally, take the square root to find the standard deviation: \[ \text{Standard Deviation} = \sqrt{5.77} \approx 2.40 \] So, the standard deviation of the prices is approximately \(2.40\) (in thousands of dollars).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad