Pregunta
upstudy study bank question image url

The angle sum of a polygon is \( 360^{\circ} \). How many sides does it have?

Ask by Cox Hodgson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The polygon has 4 sides.

Solución

To determine the number of sides of a polygon given that the sum of its interior angles is \( 360^{\circ} \), we'll use the formula for the sum of interior angles of a polygon: \[ \text{Sum of interior angles} = (n - 2) \times 180^{\circ} \] where \( n \) is the number of sides. Given that the sum of the interior angles is \( 360^{\circ} \), we can set up the equation: \[ (n - 2) \times 180^{\circ} = 360^{\circ} \] Now, solve for \( n \): \[ n - 2 = \frac{360^{\circ}}{180^{\circ}} = 2 \] \[ n = 2 + 2 = 4 \] **Conclusion:** The polygon has **4 sides**. This means it's a quadrilateral, such as a square, rectangle, or any other four-sided figure. **Additional Note:** If the problem were referring to the sum of the **exterior angles**, it's important to note that for any convex polygon, the sum of the exterior angles is always \( 360^{\circ} \), regardless of the number of sides. However, given the context, it's most likely that the question pertains to the sum of the **interior angles**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the number of sides in a polygon where the angle sum is \( 360^{\circ} \), we can use the formula for the sum of interior angles of a polygon, which is given by \( (n-2) \times 180^{\circ} \), where \( n \) is the number of sides. So, we set up the equation: \[ (n-2) \times 180^{\circ} = 360^{\circ} \] Solving for \( n \): \[ n-2 = \frac{360}{180} \implies n-2 = 2 \implies n = 4 \] Thus, the polygon with an angle sum of \( 360^{\circ} \) has 4 sides, which means it's a quadrilateral! A quadrilateral can take many fun forms! You might find yourself staring at a square, rectangle, or even a funky kite shape, each showcasing the beauty of angles adding up to \( 360^{\circ} \). Remember, each time you connect points to create another side, you’re unlocking more intriguing possibilities within the world of shapes! If you're feeling adventurous, why not grab some graph paper and sketch all the different types of quadrilaterals? You can try out varying angles, making connections with real-world objects like windows and tables. This interactive approach will help you visualize the concept while reinforcing the fun of geometry!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad