Pregunta
upstudy study bank question image url

For the angle \( \theta \) in standard position, determine the quadrant where the terminal side of \( \theta \) lies. \( \csc \theta>0 \) and \( \cot \theta>0 \) Quadrant:

Ask by Best Marshall. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The terminal side of \( \theta \) lies in **Quadrant I**.

Solución

To determine the quadrant where the terminal side of the angle \( \theta \) lies based on the conditions \( \csc \theta > 0 \) and \( \cot \theta > 0 \), we need to analyze the signs of the trigonometric functions involved. 1. **Understanding the conditions:** - The cosecant function \( \csc \theta \) is the reciprocal of the sine function: \[ \csc \theta = \frac{1}{\sin \theta} \] Therefore, \( \csc \theta > 0 \) implies that \( \sin \theta > 0 \). - The cotangent function \( \cot \theta \) is the ratio of the cosine function to the sine function: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} \] Thus, \( \cot \theta > 0 \) implies that \( \cos \theta \) and \( \sin \theta \) must have the same sign. 2. **Analyzing the quadrants:** - **Quadrant I:** Both \( \sin \theta > 0 \) and \( \cos \theta > 0 \) (both are positive). - **Quadrant II:** \( \sin \theta > 0 \) and \( \cos \theta < 0 \) (sine is positive, cosine is negative). - **Quadrant III:** Both \( \sin \theta < 0 \) and \( \cos \theta < 0 \) (both are negative). - **Quadrant IV:** \( \sin \theta < 0 \) and \( \cos \theta > 0 \) (sine is negative, cosine is positive). 3. **Conclusion:** Since \( \sin \theta > 0 \) and \( \cot \theta > 0 \) (which means \( \cos \theta > 0 \)), the only quadrant where both conditions are satisfied is Quadrant I. Thus, the terminal side of \( \theta \) lies in **Quadrant I**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

When considering the sign of \( \csc \theta \) and \( \cot \theta \), both being positive suggests that \( \sin \theta \) and \( \cos \theta \) are both positive. This occurs in the first quadrant, where all trigonometric ratios are positive. So, the terminal side of angle \( \theta \) lies in the first quadrant. Additionally, in the first quadrant, any angle ranging from \( 0 \) to \( 90 \) degrees has a positive sine and cosine. Thus, not only is \( \csc \theta \) positive (since it’s the reciprocal of the sine), but \( \cot \theta \), as the ratio of cosine to sine, also remains positive. This further confirms that \( \theta \) is indeed in the first quadrant.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad