Pregunta
upstudy study bank question image url

Is this statement true or false? The side length of a regular hexagon is equal to the length of the radius.

Ask by Little Simpson. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The side length of a regular hexagon is equal to the length of the radius.

Solución

**True.** In a regular hexagon (a six-sided polygon with all sides and angles equal), the relationship between the side length and the radius is direct. Here's why: - **Circumradius Definition:** The radius (often referred to as the circumradius in the context of polygons) is the distance from the center of the hexagon to any of its vertices. - **Mathematical Relationship:** For a regular \( n \)-sided polygon, the side length \( s \) and the circumradius \( R \) are related by the formula: \[ s = 2R \sin\left(\frac{\pi}{n}\right) \] Substituting \( n = 6 \) for a hexagon: \[ s = 2R \sin\left(\frac{\pi}{6}\right) = 2R \times \frac{1}{2} = R \] This shows that the side length \( s \) is equal to the circumradius \( R \) in a regular hexagon. Therefore, the statement "The side length of a regular hexagon is equal to the length of the radius" is **true**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

True! In a regular hexagon, each side length is indeed equal to the radius of the circumscribed circle. Picture this: if you were to inscribe a circle around a hexagon, the distance from the center of the hexagon to any of its vertices is the same as the length of each side. It's geometry's way of keeping everything harmonious! And speaking of fun shapes, did you know that you can also explore how hexagons pop up in nature? From honeycomb structures in beehives to the crystalline formations of snowflakes, hexagons are not just a mathematical curiosity—they're a blueprint for efficiency and beauty in the natural world!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad