Pregunta
upstudy study bank question image url

Find an equation for a circle with center \( (-3,8) \), tangent (touching at one point) to the \( y \)-axis.

Ask by O'Quinn Lindsey. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the circle is \( (x + 3)^2 + (y - 8)^2 = 9 \).

Solución

To find the equation of the circle with center \((-3, 8)\) that is tangent to the \( y \)-axis, follow these steps: 1. **Standard Equation of a Circle:** The standard form of a circle with center \((h, k)\) and radius \( r \) is: \[ (x - h)^2 + (y - k)^2 = r^2 \] Given the center \((-3, 8)\), the equation becomes: \[ (x + 3)^2 + (y - 8)^2 = r^2 \] 2. **Determine the Radius \( r \):** The circle is tangent to the \( y \)-axis (which is the line \( x = 0 \)). The distance from the center of the circle to the \( y \)-axis is equal to the radius \( r \). The distance from point \((-3, 8)\) to the \( y \)-axis is: \[ |h| = |-3| = 3 \] So, the radius \( r \) is 3. 3. **Final Equation of the Circle:** Substitute \( r = 3 \) into the standard equation: \[ (x + 3)^2 + (y - 8)^2 = 9 \] **Answer:** \[ (x + 3)^2\;+\;(y - 8)^2\;=\;9 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the equation of the circle, we need to determine its radius. The center of the circle is \((-3, 8)\). Since the circle is tangent to the \( y \)-axis, the distance from the center to the \( y \)-axis equals the radius. The distance from the center \((-3,8)\) to the \( y \)-axis (where \( x = 0 \)) is \( 3 \) units. Thus, the radius \( r \) is \( 3 \). The standard form of the equation of a circle is given by: \[ (x - h)^2 + (y - k)^2 = r^2 \] Where \((h, k)\) is the center. Plugging in the center and the radius, we have: \[ (x + 3)^2 + (y - 8)^2 = 3^2 \] Simplifying further, the equation of the circle is: \[ (x + 3)^2 + (y - 8)^2 = 9 \] Now, you've got a circle that’s just a hop away from the \( y \)-axis! But did you know? Circles are fascinating! They are not just found in geometry and math classes; their mathematical principles help in various fields like engineering, physics, and even in design. Circles create balance and harmony, which is why they often appear in logos and art! If you're curious about the applications of circles, consider how they play a role in wheel designs. The round shape allows for smooth rolling motion, showing the brilliance of circular geometry in everyday objects. From bicycles to automobiles, circles ensure efficiency and functionality in transportation!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad