\( \begin{array}{ll}\text { (2) } & (x-1)\left(x^{2}-2 x+3\right) \\ \text { (4) } & (2 x-4)\left(x^{2}-3 x+1\right) \\ \text { (6) } & (a+2 b)\left(4 a^{2}-3 a b+b^{2}\right)\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To expand these expressions, simply apply the distributive property (also known as the FOIL method for binomials) for each case. Start with the first expression: For \((x-1)(x^{2}-2x+3)\), distribute \(x\) and \(-1\) across the polynomial: \[ x \cdot (x^2 - 2x + 3) - 1 \cdot (x^2 - 2x + 3) = x^3 - 2x^2 + 3x - x^2 + 2x - 3 = x^3 - 3x^2 + 5x - 3 \] Now, the second expression: For \((2x-4)(x^{2}-3x+1)\), distribute \(2x\) and \(-4\): \[ 2x \cdot (x^2 - 3x + 1) - 4\cdot (x^2 - 3x + 1) = 2x^3 - 6x^2 + 2x - 4x^2 + 12x - 4 = 2x^3 - 10x^2 + 14x - 4 \] Lastly, for the third expression: For \((a+2b)(4a^{2}-3ab+b^{2})\), distribute \(a\) and \(2b\): \[ a \cdot (4a^2 - 3ab + b^2) + 2b \cdot (4a^2 - 3ab + b^2) = 4a^3 - 3a^2b + ab^2 + 8ab^2 - 6ab^2 + 2b^3 = 4a^3 + 5a^2b + 2b^3 \] So the final expanded expressions are: 1. \(x^3 - 3x^2 + 5x - 3\) 2. \(2x^3 - 10x^2 + 14x - 4\) 3. \(4a^3 + 5a^2b + 2b^3\)