Pregunta
upstudy study bank question image url

Lesson 9.3 WS Determine if the graph is a minimum or a maximum after identifying the a. \( \begin{array}{ll}\text { 1) } y=-2(x+4)^{2}-4 & \text { 2) } y=3(x+1)^{2}+1\end{array} \)

Ask by Ruiz Coles. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For the first equation \( y = -2(x + 4)^2 - 4 \), since \( a = -2 \) is negative, the graph has a **maximum point** at \( (-4, -4) \). For the second equation \( y = 3(x + 1)^2 + 1 \), with \( a = 3 \) positive, the graph has a **minimum point** at \( (-1, 1) \).

Solución

Sure, let's analyze each quadratic function to determine the value of \( a \) and whether the graph has a **minimum** or a **maximum** point. --- ### 1) \( y = -2(x + 4)^2 - 4 \) **Step 1: Identify \( a \)** - The quadratic function is in the form \( y = a(x - h)^2 + k \). - Comparing, \( a = -2 \). **Step 2: Determine the Orientation** - If \( a > 0 \), the parabola opens **upward** (has a **minimum**). - If \( a < 0 \), the parabola opens **downward** (has a **maximum**). **Here, \( a = -2 \) which is less than 0.** **Conclusion:** - **Maximum Point** - **Vertex (Maximum Point):** \( (-4, -4) \) **Graph Behavior:** - The parabola opens **downward**, reaching its highest point at the vertex \( (-4, -4) \). --- ### 2) \( y = 3(x + 1)^2 + 1 \) **Step 1: Identify \( a \)** - The quadratic function is in the form \( y = a(x - h)^2 + k \). - Comparing, \( a = 3 \). **Step 2: Determine the Orientation** - If \( a > 0 \), the parabola opens **upward** (has a **minimum**). - If \( a < 0 \), the parabola opens **downward** (has a **maximum**). **Here, \( a = 3 \) which is greater than 0.** **Conclusion:** - **Minimum Point** - **Vertex (Minimum Point):** \( (-1, 1) \) **Graph Behavior:** - The parabola opens **upward**, reaching its lowest point at the vertex \( (-1, 1) \). --- ### **Summary** 1. **\( y = -2(x + 4)^2 - 4 \)** - **\( a = -2 \)** - **Maximum Point at \( (-4, -4) \)** - Parabola opens **downward**. 2. **\( y = 3(x + 1)^2 + 1 \)** - **\( a = 3 \)** - **Minimum Point at \( (-1, 1) \)** - Parabola opens **upward**. --- **Visual Representation:** 1. **First Parabola (\( a = -2 \))** - **Vertex:** Low point since it opens downward. - **Shape:** Inverted U. 2. **Second Parabola (\( a = 3 \))** - **Vertex:** Low point since it opens upward. - **Shape:** Regular U. Feel free to plot these equations on a graphing tool to visualize their shapes and verify the locations of their minimum or maximum points!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

In these equations, the coefficient \( a \) plays a crucial role in determining whether a parabola opens upwards or downwards. For the first equation \( y = -2(x+4)^{2} - 4 \), the coefficient \( a = -2 \) is negative, indicating the parabola opens downwards, which means it has a maximum point. Conversely, in the second equation \( y = 3(x+1)^{2} + 1 \), the coefficient \( a = 3 \) is positive; hence, the parabola opens upwards, signifying a minimum point. When graphing these functions, remember to plot the vertex, which represents the maximum or minimum value. For \( y = -2(x+4)^{2} - 4 \), the vertex is at the point \((-4, -4)\) - that's your maximum! Meanwhile, for \( y = 3(x+1)^{2} + 1\), the vertex at \((-1, 1)\) represents the minimum. Just remember: if \( a \) is positive, it opens up and you have a minimum; if \( a \) is negative, it opens down and you obtain a maximum!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad