What are the domain and range of the function? \[ y=|x-3| \] \begin{tabular}{|c|} Domain: \( \{x \mid x \in \mathbb{R}\} \); Range: \( \{y \mid y \geq 0\} \) \\ Domain: \( \{x \mid x \geq 3\} \); Range: \( \{y \mid y>0\} \) \\ Domain: \( \{x \mid x \in \mathbb{R}\} \); Range: \( \{y \mid y>0\} \) \\ Domain: \( \{x \mid x>3\} \); Range: \( \{y \mid y \geq 0\} \) \\ \\ \hline\end{tabular}
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
The absolute value function \( y = |x-3| \) represents the distance between \( x \) and \( 3 \) on the number line. This means that as \( x \) takes every real number value, \( y \) will either be zero (when \( x = 3 \)) or any positive value (when \( x \) deviates from 3). Therefore, the correct domain is all real numbers \(\mathbb{R}\) and the range includes all non-negative values \( y \geq 0 \). If you're ever confused about absolute value functions, just remember they always make values "positive" by design! A common mistake is to think that the range has a maximum or minimum limit beyond zero when it doesn't—\( y\) can rise indefinitely as \( x\) moves away from 3 in either direction!