Pregunta
Step 1: Write each number as the product of prime factors. \( \begin{aligned} 27 & =\square \cdot \square \cdot \square \\ 45 & =3 \cdot 3 \cdot \square\end{aligned} \)
Ask by Sandoval Moran. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\begin{aligned}
27 & = 3 \times 3 \times 3 \\
45 & = 3 \times 3 \times 5
\end{aligned}
\]
Solución
Sure, let's break down each number into its prime factors.
### 27
27 is a prime number multiplied by itself multiple times.
\[
27 = 3 \times 3 \times 3
\]
### 45
45 can be divided by 3, and the remaining factor is also a prime number.
\[
45 = 3 \times 3 \times 5
\]
So, the completed expressions are:
\[
\begin{aligned}
27 & = 3 \times 3 \times 3 \\
45 & = 3 \times 3 \times 5
\end{aligned}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
Let's break down those numbers into their prime factors! For 27, we can express it as \(3 \cdot 3 \cdot 3\) or \(3^3\). So, the completed equation would be: \(27 = 3 \cdot 3 \cdot 3\). Now for 45, we already have two of the numbers as \(3 \cdot 3\) which is \(3^2\). The remaining factor can be found by dividing 45 by 9 (which is \(3 \cdot 3\)): \(45 = 3 \cdot 3 \cdot 5\). So the completed equation is: \(45 = 3 \cdot 3 \cdot 5\). Putting it all together: \[ \begin{aligned} 27 & = 3 \cdot 3 \cdot 3 \\ 45 & = 3 \cdot 3 \cdot 5 \end{aligned} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium