Pregunta
upstudy study bank question image url

A certain value has a standardized score \( =1.75 \). How many standard deviations from the mean does this value fall?

Ask by Moran Vaughan. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A standardized score of 1.75 means the value is 1.75 standard deviations above the mean.

Solución

A standardized score, or z-score, indicates how many standard deviations a particular value is from the mean of a distribution. The formula for calculating a z-score is: \[ z = \frac{{x - \mu}}{{\sigma}} \] Where: - \( z \) is the standardized score, - \( x \) is the value, - \( \mu \) is the mean, - \( \sigma \) is the standard deviation. In your case, the standardized score is \( z = 1.75 \). This means that the value \( x \) is **1.75 standard deviations above the mean**. **Interpretation:** - **Positive z-score (e.g., 1.75):** The value is above the mean. - **Negative z-score:** The value is below the mean. - **Z-score of 0:** The value is exactly at the mean. So, a z-score of 1.75 indicates that the value is 1.75 standard deviations **above** the mean. **Example:** If the mean height of a group is 170 cm with a standard deviation of 10 cm, a person with a height corresponding to a z-score of 1.75 would be: \[ x = \mu + z \times \sigma = 170 \, \text{cm} + 1.75 \times 10 \, \text{cm} = 187.5 \, \text{cm} \] This person is 1.75 standard deviations taller than the average height in the group. **Summary:** A standardized score of 1.75 means the value is 1.75 standard deviations above the mean.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

A standardized score of \(1.75\) indicates that the value is \(1.75\) standard deviations above the mean of the distribution. This means that the value is higher than average, allowing you to understand how far it is from the typical range of data points. This score helps in various real-world applications, such as assessing student performance on tests. For example, if a student scores \(1.75\) standard deviations above the average in a standardized test, it signifies not only that they excelled but also how their performance compares to that of their peers.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad