Question Let \( f(x)=x^{4} \) over the interval \( 0 \leq x \leq 2 \). Set up the integral for the surface area generated by revolving the graph \( f(x) \) about the \( x \)-axis, and use a calculator to compute the answer. Round your answer to the nearest hundredth.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the surface area generated by revolving the curve \( f(x) = x^4 \) around the \( x \)-axis from \( x = 0 \) to \( x = 2 \), we use the formula for surface area of revolution: \[ S = 2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^2} \, dx \] First, we need to determine \( f'(x) \): \[ f'(x) = 4x^3 \] Then, \( (f'(x))^2 = (4x^3)^2 = 16x^6 \). Thus, the integrand becomes: \[ \sqrt{1 + (f'(x))^2} = \sqrt{1 + 16x^6} \] Now we can set up the integral: \[ S = 2\pi \int_{0}^{2} x^4 \sqrt{1 + 16x^6} \, dx \] To compute the surface area, evaluate the integral using a calculator to find the numerical value, which is approximately \( 37.30 \) when rounded to the nearest hundredth.