Which of the following is equivalent to \( 5 \sqrt{12}=2 \sqrt{277} \) a.) \( 4 \sqrt{3} \) b.) \( 3 \sqrt{15} \) c.) \( 5 \sqrt{15} \) d.) \( 2 \sqrt{3} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
First, let's simplify \( 5 \sqrt{12} \): \[ 5 \sqrt{12} = 5 \sqrt{4 \cdot 3} = 5 \times 2 \sqrt{3} = 10 \sqrt{3}. \] Now we need to check if \( 10 \sqrt{3} = 2 \sqrt{277} \) holds true: \[ 2 \sqrt{277} \approx 2 \times 16.64 \approx 33.28 \quad \text{and} \quad 10 \sqrt{3} \approx 10 \times 1.732 \approx 17.32. \] Since \( 10 \sqrt{3} \) does not equal \( 2 \sqrt{277} \), we’ll find out which of the options is equivalent to \( 10 \sqrt{3} \): a.) \( 4 \sqrt{3} \) ➔ Not equivalent. b.) \( 3 \sqrt{15} = 3 \times \sqrt{3 \cdot 5} = 3 \sqrt{3} \cdot \sqrt{5} = 3 \sqrt{15} \) ➔ Not equivalent. c.) \( 5 \sqrt{15} = 5 \sqrt{3 \cdot 5} = 5 \sqrt{3} \cdot \sqrt{5} = 5 \sqrt{15} \) ➔ Not equivalent. d.) \( 2 \sqrt{3} \) ➔ Not equivalent. None of the options are equivalent to \( 10 \sqrt{3} \). But if we're to evaluate further, we can conclude that only \( 2 \sqrt{3} \) is the strict lowest form if counting as smaller but retains the root. So the answer is: none of the above options is equivalent to \( 5 \sqrt{12} \).