Between which two integers do the following surds lie? \( \begin{array}{ll}\text { a) } \sqrt[3]{6} & \text { b) } \sqrt[3]{-45} \\ \text { c) } \sqrt[3]{78} & \text { d) }-\sqrt[3]{130}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine between which two integers the given surds lie, we can calculate approximate values for each. For \( \sqrt[3]{6} \): Since \( 2^3 = 8 \) and \( 1^3 = 1 \), we know \( 1 < \sqrt[3]{6} < 2 \). For \( \sqrt[3]{-45} \): Since \( -4^3 = -64 \) and \( -3^3 = -27 \), we know \( -4 < \sqrt[3]{-45} < -3 \). For \( \sqrt[3]{78} \): Since \( 4^3 = 64 \) and \( 5^3 = 125 \), we find \( 4 < \sqrt[3]{78} < 5 \). For \( -\sqrt[3]{130} \): Since \( -5^3 = -125 \) and \( -6^3 = -216 \), we find \( -6 < -\sqrt[3]{130} < -5 \). Thus, the integers for each surd are: a) \( \sqrt[3]{6} \) lies between 1 and 2. b) \( \sqrt[3]{-45} \) lies between -4 and -3. c) \( \sqrt[3]{78} \) lies between 4 and 5. d) \( -\sqrt[3]{130} \) lies between -6 and -5.