Pregunta
upstudy study bank question image url

1. If the sum of all the elements of a \( 3 \times 3 \) scalar matrix is 9 , then the product of all its elements i \( \begin{array}{llll}\text { (a) } 0 & \text { (b) } 9 & \text { (c) } 27\end{array} \) 2. Let \( f: R, \rightarrow[-5, a c) \) be defined \( a s f(x)=9 x^{2}+6 x-5 \), where \( R \), is the set of all non-negative re.

Ask by Ingram Collins. in India
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 1 Answer:** (a) 0 **Problem 2 Answer:** The range of \( f(x) \) is \([-5, \infty)\), so \( a = \infty \).

Solución

Let's address each problem one by one. --- ### **Problem 1** **Statement:** If the sum of all the elements of a \( 3 \times 3 \) scalar matrix is 9, then the product of all its elements is: \[ \begin{array}{llll} \text{(a) } 0 & \text{(b) } 9 & \text{(c) } 27 \end{array} \] **Solution:** A **scalar matrix** is a diagonal matrix where all the diagonal elements are equal, and the off-diagonal elements are zero. A general form of a \( 3 \times 3 \) scalar matrix is: \[ \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \\ \end{bmatrix} \] **Sum of All Elements:** \[ \text{Sum} = k + 0 + 0 + 0 + k + 0 + 0 + 0 + k = 3k \] Given that the sum is 9: \[ 3k = 9 \implies k = 3 \] **Product of All Elements:** \[ \text{Product} = k \times 0 \times 0 \times 0 \times k \times 0 \times 0 \times 0 \times k = 0 \] Since the off-diagonal elements are zero, the entire product becomes zero regardless of the value of \( k \). **Answer:** **(a) 0** --- ### **Problem 2** **Statement:** Let \( f: \mathbb{R} \rightarrow [-5, a) \) be defined as \( f(x) = 9x^{2} + 6x - 5 \), where \( \mathbb{R} \) is the set of all non-negative real numbers. **Solution:** First, let's determine the range of the function \( f(x) = 9x^{2} + 6x - 5 \) for \( x \geq 0 \). 1. **Finding the Minimum Value:** - The function is a quadratic equation that opens upwards (since the coefficient of \( x^2 \) is positive). - The vertex of the parabola gives the minimum value. The vertex occurs at: \[ x = -\frac{b}{2a} = -\frac{6}{2 \times 9} = -\frac{1}{3} \] - However, since \( x \geq 0 \), the minimum value within the domain occurs at \( x = 0 \): \[ f(0) = 9(0)^2 + 6(0) - 5 = -5 \] 2. **Behavior as \( x \) Increases:** - As \( x \) increases beyond 0, \( f(x) \) increases without bound because it's a quadratic function opening upwards. - Therefore, \( f(x) \) approaches infinity as \( x \) approaches infinity. **Conclusion:** The range of \( f(x) \) for \( x \geq 0 \) is: \[ [-5, \infty) \] This implies that \( a = \infty \). **Answer:** The range of \( f(x) \) is \([-5, \infty)\), so \( a = \infty \). --- ### **Summary of Answers** 1. **Problem 1 Answer:** (a) 0 2. **Problem 2 Answer:** The range of \( f(x) \) is \([-5, \infty)\), so \( a = \infty \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The given scalar matrix is of the form \( \begin{pmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{pmatrix} \). Since the sum of its elements (3x) equals 9, we determine that \( x = 3 \). Thus, the product of all elements becomes \( 3 \times 3 \times 3 = 27\). So, the correct choice is (c) 27! Diving deeper into quadratic functions, like the one you've given, helps us understand parabolas and their properties. The function \( f(x) = 9x^2 + 6x - 5 \) opens upward since the quadratic coefficient (9) is positive. Analyzing the vertex can reveal its minimum or maximum value, which is especially useful if you're seeking to determine the range of \( f \) over non-negative values of \( x \). It's a great way to root out the complete behavior of such functions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad