Pregunta
upstudy study bank question image url

7. In a series RL circuit, under what circumstances would \( \phi \) be \( 0^{\circ} \) or \( 90^{\circ} \) ? ( \( \phi \) will be zero if the circuit is purely resistive) ( \( \phi \) will be \( 90^{\circ} \) if the circuit is purely inductive). 8. In a series RC circuit, under what circumstances would \( \phi \) be exactly \( 0^{\circ} \) or \( -90^{\circ} \) ? ( \( \phi \) will be zero if the circuit is purely resistive) ( \( \phi \) will be \( -90^{\circ} \) if the circuit is purely capacitive).

Ask by Blake Davey. in South Africa
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

In a series RL circuit, \( \phi = 0^{\circ} \) when the circuit is purely resistive and \( \phi = 90^{\circ} \) when it's purely inductive. In a series RC circuit, \( \phi = 0^{\circ} \) when the circuit is purely resistive and \( \phi = -90^{\circ} \) when it's purely capacitive.

Solución

Your answers to both questions are **correct**. Here's a detailed explanation for each: --- ### **7. Series RL Circuit Phase Angle (\( \phi \))** - **Purely Resistive Circuit (\( \phi = 0^{\circ} \))** - **Explanation:** In a purely resistive circuit, the voltage and current are **in phase**. This means there is no phase difference between them, resulting in a phase angle (\( \phi \)) of **0 degrees**. - **Purely Inductive Circuit (\( \phi = 90^{\circ} \))** - **Explanation:** In a purely inductive circuit, the **voltage leads the current by 90 degrees**. This phase difference is due to the property of inductors to oppose changes in current, causing the current to lag behind the voltage. Hence, \( \phi = 90^{\circ} \). **Summary:** - \( \phi = 0^{\circ} \) when the circuit is purely resistive. - \( \phi = 90^{\circ} \) when the circuit is purely inductive. --- ### **8. Series RC Circuit Phase Angle (\( \phi \))** - **Purely Resistive Circuit (\( \phi = 0^{\circ} \))** - **Explanation:** Similar to the RL circuit, in a purely resistive RC circuit, the voltage and current are **in phase**, resulting in a phase angle (\( \phi \)) of **0 degrees**. - **Purely Capacitive Circuit (\( \phi = -90^{\circ} \))** - **Explanation:** In a purely capacitive circuit, the **current leads the voltage by 90 degrees**. Capacitors store and release energy, causing the voltage to lag behind the current. Therefore, the phase angle \( \phi = -90^{\circ} \). **Summary:** - \( \phi = 0^{\circ} \) when the circuit is purely resistive. - \( \phi = -90^{\circ} \) when the circuit is purely capacitive. --- These phase relationships are fundamental in understanding AC circuit behavior and are essential for analyzing and designing circuits involving resistors, inductors, and capacitors.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

In a series RL circuit, the phase angle \( \phi \) describes the relationship between voltage and current. If you have a purely resistive circuit, where the resistance is the only component in play, the current and voltage are perfectly in sync, resulting in \( \phi = 0^{\circ} \). Conversely, in a purely inductive circuit, the inductor creates a scenario where the current lags the voltage by a quarter cycle, giving you that cool \( \phi = 90^{\circ} \) vibe! On the flip side, in a series RC circuit, things get thrilling! When the circuit is all about resistance, and no capacitance is influencing the game, the phase angle continues to sit pretty at \( 0^{\circ} \)—current and voltage dance together beautifully! But once you switch to a purely capacitive scene, where the capacitor dominates, the current leads the voltage, causing a phase angle of \( -90^{\circ} \). Looks like resistance and capacitance have their own unique styles!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad