Pregunta
upstudy study bank question image url

An amount of R 2590 is invested in a savings account which pays a compound interest rate of \( 11,5 \% \) p.a. Calculate the balance accumulated by the end of 6 years. INSTRUCTION: As usual with financial calculations, round your answer to two decimal places, but do not round off until you have reached the solution.

Ask by Schneider Vaughan. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The balance accumulated by the end of 6 years is R 4976.79.

Solución

To calculate the balance accumulated by the end of 6 years with compound interest, we can use the formula for compound interest: \[ A = P \times (1 + \frac{r}{100})^n \] Where: - \( A \) is the amount accumulated after \( n \) years, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate (in %), - \( n \) is the number of years. Given: - Principal amount (\( P \)) = R 2590, - Annual interest rate (\( r \)) = 11.5%, - Number of years (\( n \)) = 6. Substitute the given values into the formula: \[ A = 2590 \times (1 + \frac{11.5}{100})^6 \] Now, we can calculate the balance accumulated by the end of 6 years. Calculate the value by following steps: - step0: Calculate: \(2590\left(1+\frac{11.5}{100}\right)^{6}\) - step1: Divide the terms: \(2590\left(1+\frac{23}{200}\right)^{6}\) - step2: Add the numbers: \(2590\left(\frac{223}{200}\right)^{6}\) - step3: Simplify: \(2590\times \frac{223^{6}}{200^{6}}\) - step4: Rewrite the expression: \(10\times 259\times \frac{223^{6}}{200^{6}}\) - step5: Rewrite the expression: \(10\times 259\times \frac{223^{6}}{100^{6}\times 2^{6}}\) - step6: Rewrite the expression: \(10\times 259\times \frac{223^{6}}{10^{12}\times 2^{6}}\) - step7: Reduce the numbers: \(259\times \frac{223^{6}}{10^{11}\times 2^{6}}\) - step8: Multiply the fractions: \(\frac{259\times 223^{6}}{64\times 10^{11}}\) The balance accumulated by the end of 6 years is approximately R 4976.79.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the balance accumulated by the end of 6 years with compound interest, you can use the formula: \[ A = P \times (1 + r)^n \] Where: - \( A \) is the amount of money accumulated after \( n \) years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of years the money is invested or borrowed. In this case: - \( P = 2590 \) - \( r = 11.5\% = 0.115 \) - \( n = 6 \) Now plugging in the values: \[ A = 2590 \times (1 + 0.115)^6 \] Calculating \( (1 + 0.115)^6 \): \[ (1.115)^6 \approx 1.8983 \] Now substitute this back into the equation: \[ A \approx 2590 \times 1.8983 \approx 4912.80 \] Thus, the balance accumulated by the end of 6 years is approximately **R 4912.80**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad