Pregunta

Set the polynomial to zero and solve: \( x^{2} - 9x + 14 = 0 \)

Ask by Bush Lyons. in India
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( x = 2 \) and \( x = 7 \).

Solución

To solve the quadratic equation \( x^{2} - 9x + 14 = 0 \), you can use several methods such as factoring, completing the square, or the quadratic formula. Here, we'll demonstrate the **factoring method** and the **quadratic formula**. ### Method 1: Factoring 1. **Write the equation in standard form:** \[ x^{2} - 9x + 14 = 0 \] 2. **Find two numbers that multiply to **+14** and add to **-9**:** - The numbers **-7** and **-2** satisfy these conditions because: \[ (-7) \times (-2) = 14 \quad \text{and} \quad (-7) + (-2) = -9 \] 3. **Factor the quadratic using these numbers:** \[ x^{2} - 7x - 2x + 14 = 0 \\ (x^{2} - 7x) + (-2x + 14) = 0 \\ x(x - 7) - 2(x - 7) = 0 \\ (x - 7)(x - 2) = 0 \] 4. **Set each factor equal to zero and solve for \( x \):** \[ x - 7 = 0 \quad \Rightarrow \quad x = 7 \\ x - 2 = 0 \quad \Rightarrow \quad x = 2 \] ### Method 2: Quadratic Formula The quadratic formula states that for any quadratic equation \( ax^{2} + bx + c = 0 \), the solutions for \( x \) are: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] 1. **Identify the coefficients \( a \), \( b \), and \( c \):** \[ a = 1, \quad b = -9, \quad c = 14 \] 2. **Plug the coefficients into the quadratic formula:** \[ x = \frac{-(-9) \pm \sqrt{(-9)^{2} - 4(1)(14)}}{2(1)} \\ x = \frac{9 \pm \sqrt{81 - 56}}{2} \\ x = \frac{9 \pm \sqrt{25}}{2} \\ x = \frac{9 \pm 5}{2} \] 3. **Calculate the two possible solutions:** \[ x = \frac{9 + 5}{2} = \frac{14}{2} = 7 \\ x = \frac{9 - 5}{2} = \frac{4}{2} = 2 \] ### **Solution** Both methods yield the same solutions. Therefore, the solutions to the equation \( x^{2} - 9x + 14 = 0 \) are: \[ \boxed{x = 2 \quad \text{and} \quad x = 7} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the polynomial \( x^{2} - 9x + 14 = 0 \), we can factor it. We look for two numbers that multiply to \( 14 \) and add up to \( -9 \). These numbers are \( -7 \) and \( -2 \). Thus, we can factor the polynomial as \( (x - 7)(x - 2) = 0 \). Setting each factor equal to zero gives us the solutions: 1. \( x - 7 = 0 \) → \( x = 7 \) 2. \( x - 2 = 0 \) → \( x = 2 \) So the solutions are \( x = 7 \) and \( x = 2 \). If you want a quick way to double-check your factoring, you can use the quadratic formula! Just plug the coefficients \( a = 1, b = -9, \) and \( c = 14 \) into \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). You'll end up with the same answers, ensuring your solutions are spot on!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad