Solve the system by the substitution method. \[ \begin{array}{r}x-2 y=-3 \\ y=-4 x+24\end{array} \] Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is \( \{\square \). (Type an ordered pair.) B. There are infinitely many solutions. C. There is no solution.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the system by substitution, we start with the equation \( y = -4x + 24 \) and substitute this expression for \( y \) in the first equation \( x - 2y = -3 \). Thus, we have: \[ x - 2(-4x + 24) = -3 \] Expanding this gives: \[ x + 8x - 48 = -3 \] \[ 9x - 48 = -3 \] Now, adding 48 to both sides: \[ 9x = 45 \] Dividing by 9: \[ x = 5 \] Next, we substitute \( x = 5 \) back into the equation for \( y \): \[ y = -4(5) + 24 \] \[ y = -20 + 24 = 4 \] Thus, the solution set is \( \{(5, 4)\} \). Choose option A: A. The solution set is \( \{(5, 4)\} \).