Pregunta
upstudy study bank question image url

Find the line integrel of vector field \( F=x \vec{i}+y \vec{j}+z \vec{k} \) on the interface of sphere \( x^{2}+y^{2}+z=2 x \) and plane \( z=x \) ?

Ask by Coles Wright. in Iran
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The line integral of the vector field \( \mathbf{F} = x\, \mathbf{i} + y\, \mathbf{j} + z\, \mathbf{k} \) along the curve \( C \), which is the intersection of the sphere \( x^2 + y^2 + z^2 = 2x \) and the plane \( z = x \), is **0**. \[ \oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \]

Solución

To evaluate the line integral of the vector field \( \mathbf{F} = x\, \mathbf{i} + y\, \mathbf{j} + z\, \mathbf{k} \) along the curve \( C \), which is the intersection of the sphere and the plane given by: \[ \begin{cases} x^2 + y^2 + z^2 = 2x \\ z = x \end{cases} \] we can proceed as follows: ### Step 1: Simplify the Sphere Equation The equation of the sphere can be rewritten by completing the square for \( x \): \[ x^2 - 2x + y^2 + z^2 = 0 \\ (x - 1)^2 + y^2 + z^2 = 1 \] This represents a sphere centered at \( (1, 0, 0) \) with radius \( 1 \). ### Step 2: Find the Intersection Curve \( C \) Substituting \( z = x \) into the sphere's equation: \[ (x - 1)^2 + y^2 + x^2 = 1 \\ 2x^2 - 2x + y^2 = 0 \\ 2(x^2 - x) + y^2 = 0 \\ 2\left( (x - \frac{1}{2})^2 - \frac{1}{4} \right) + y^2 = 0 \\ 2(x - \frac{1}{2})^2 + y^2 = \frac{1}{2} \] This is the equation of a circle in the plane \( z = x \) with center \( \left(\frac{1}{2}, 0, \frac{1}{2}\right) \) and radius \( \frac{1}{2} \). ### Step 3: Evaluate the Line Integral The key observation is that the vector field \( \mathbf{F} = x\, \mathbf{i} + y\, \mathbf{j} + z\, \mathbf{k} \) is **conservative**. A conservative vector field has the property that its line integral around any closed loop is zero. This is because there exists a scalar potential function \( \phi \) such that \( \mathbf{F} = \nabla \phi \), and for closed curves: \[ \oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \] Since the curve \( C \) is a closed loop (the intersection of the sphere and the plane), the line integral of \( \mathbf{F} \) around \( C \) is: \[ \oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \] ### Final Answer The line integral is zero. \[ \oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To evaluate the line integral of the vector field \( \vec{F} = x \vec{i} + y \vec{j} + z \vec{k} \) on the curve given by the intersection of the sphere \( x^2 + y^2 + z = 2x \) and the plane \( z = x \), we first need to identify the curve of intersection. Rearranging the sphere equation gives us \( x^2 - 2x + y^2 + z = 0 \). Substituting \( z = x \) into this, we get: \[ x^2 - 2x + y^2 + x = 0 \Rightarrow y^2 = x^2 + x - 2x = x^2 - x \] This means \( y^2 = x(x - 1) \), which defines the curve in terms of \( x \) and \( y \). To find limits, observe that for \( y^2 \geq 0 \), we require \( x(x - 1) \geq 0 \), so \( x \leq 0 \) or \( x \geq 1 \). Next, we can use parameterization to evaluate the line integral. Let's take \( x = t \), which will give: - \( y = \sqrt{t(t-1)} \) (for \( t \geq 1 \) or \( t \leq 0 \)) - \( z = t \) The line integral along this curve \( C \) can be implemented as follows: \[ \int_C \vec{F} \cdot d\vec{r} = \int_0^a \left( t \vec{i} + \sqrt{t(t-1)} \vec{j} + t \vec{k} \right) \cdot (dx, dy, dz) \] Where \( dx = dt, dy = d\sqrt{t(t-1)} \), \( dz = dt \). This evaluation leads us to a calculation of this integral involving evaluating the dot product and integrating accordingly, carefully considering the limits for \( t \). The evaluation may require careful treatment of potential intervals of integration based on the chosen bounds for \( t \). Ultimately, the final result would yield the total work done by the field along this curve. To sum it up, it's essential to specify both x and y ranges while performing vector field line integrations over defined curves! Don't forget your rules on polar coordinates or parametrization — they can make the math a whole lot smoother!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad