Solve the equation on the interval \( 0 \leq \theta<2 \pi \). \[ \cos (2 \theta)+6 \sin ^{2} \theta=4 \] What is the solution in the interval \( 0 \leq \theta<2 \pi \) ? Select the correct choice and fill in any answer boxes in your choice below. A. \( \theta= \) \( \square \) ) (Simplify your answer. Type an exact answer, using \( \pi \) as needed. Type your answer in radians. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as noeded.) B. There is no solution.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve the equation \(\cos (2 \theta) + 6 \sin^2 \theta = 4\), we start by using the double angle identity, \(\cos(2\theta) = 1 - 2\sin^2(\theta)\). Substituting that into the equation gives: \[ 1 - 2\sin^2 \theta + 6\sin^2 \theta = 4 \] This simplifies to: \[ 1 + 4\sin^2 \theta = 4 \] Subtracting 1 from both sides results in: \[ 4\sin^2 \theta = 3 \] Dividing both sides by 4 yields: \[ \sin^2 \theta = \frac{3}{4} \] Taking the square root of both sides, we find: \[ \sin \theta = \pm \frac{\sqrt{3}}{2} \] Now we need to find the angles \(\theta\) where \(\sin \theta = \frac{\sqrt{3}}{2}\) and \(\sin \theta = -\frac{\sqrt{3}}{2}\): 1. For \(\sin \theta = \frac{\sqrt{3}}{2}\): - \(\theta = \frac{\pi}{3}, \frac{2\pi}{3}\) 2. For \(\sin \theta = -\frac{\sqrt{3}}{2}\): - \(\theta = \frac{4\pi}{3}, \frac{5\pi}{3}\) Putting it all together, the solutions in the interval \(0 \leq \theta < 2\pi\) are: \(\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\) So the correct choice is: A. \( \theta= \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3} \)