Pregunta
upstudy study bank question image url

4) Find the distance between the points \( (8,-8) \) and \( (7,0) \). 4)) Write your answer as a whole number or a fully simplified radical expression. Do not (1)

Ask by Bond Norris. in the United States
Jan 20,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The distance between the points \( (8, -8) \) and \( (7, 0) \) is \( \sqrt{65} \).

Solución

To find the distance between the points \( (8, -8) \) and \( (7, 0) \), we can use the **distance formula**: \[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Plugging in the given points \( (x_1, y_1) = (8, -8) \) and \( (x_2, y_2) = (7, 0) \): \[ \text{Distance} = \sqrt{(7 - 8)^2 + (0 - (-8))^2} \] \[ = \sqrt{(-1)^2 + (8)^2} \] \[ = \sqrt{1 + 64} \] \[ = \sqrt{65} \] Since \( \sqrt{65} \) cannot be simplified further into smaller radical terms, the distance between the two points is: \[ \sqrt{65} \] **Answer:** \(\sqrt{65}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the distance between the points \( (8,-8) \) and \( (7,0) \), you can use the distance formula, which is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Plugging in your points where \( (x_1, y_1) = (8,-8) \) and \( (x_2, y_2) = (7,0) \): \[ d = \sqrt{(7 - 8)^2 + (0 - (-8))^2} \] \[ = \sqrt{(-1)^2 + (8)^2} \] \[ = \sqrt{1 + 64} \] \[ = \sqrt{65} \] So, the distance is \( \sqrt{65} \). Did you know that the concept of distance really took off in the 17th century with the advent of coordinate geometry, thanks to mathematicians like René Descartes? By merging algebra and geometry, they paved the way for all sorts of fun explorations like navigation, physics, and even computer graphics! In real-world scenarios, calculating distance is essential, whether you’re planning a road trip, designing a video game, or creating a flight path for a drone. Knowing how to accurately compute the distance between two points lets you optimize routes and understand spatial relationships, opening up a world of possibilities!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad