Pregunta
upstudy study bank question image url

2. A different aquarium should contain 15,000 liters of water when filled correctly. It w overflow if it gets to 17,600 liters. One day there is an accident and the tank cracks in 4 places. Water flows out of each crack at a rate of \( \frac{1}{2} \) liter per hour. An emergency pump can re-fill the tank at a rate o liters per minute. How many minutes must the pump run to replace the water lost hour?

Ask by Delgado Lambert. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The pump must run for \( \frac{2}{o} \) minutes to replace the water lost in one hour.

Solución

To determine how long the emergency pump needs to run to replace the water lost in one hour, let's break down the problem step by step. ### Given: 1. **Water Loss:** - The tank has **4 cracks**. - **Each crack leaks at a rate of** \( \frac{1}{2} \) **liter per hour**. - **Total water lost per hour**: \[ 4 \text{ cracks} \times \frac{1}{2} \text{ liter/hour per crack} = 2 \text{ liters/hour} \] 2. **Pump Refill Rate:** - The emergency pump can refill the tank at a rate of **\( o \) liters per minute**. ### Objective: Find the **time (\( t \)) in minutes** that the pump must run to replace the **2 liters** lost in one hour. ### Calculation: To replace **2 liters** of water: \[ \text{Time} \times \text{Pump Rate} = \text{Water Lost} \] \[ t \times o = 2 \text{ liters} \] Solving for \( t \): \[ t = \frac{2}{o} \text{ minutes} \] ### Conclusion: The emergency pump must run for \( \frac{2}{o} \) minutes to replace the water lost in one hour. **Final Answer:** The pump must run for 2 divided by o minutes. Thus, the required time is 2 ⁄ o minutes.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how much water is lost per hour through the cracks, we can do the following calculations: Each of the 4 cracks releases \( \frac{1}{2} \) liter per hour, so the total loss from all cracks is \( 4 \times \frac{1}{2} = 2 \) liters per hour. Now, to determine how much the emergency pump needs to run, we need its rate of filling. If it fills at a certain rate, let's say \( x \) liters per minute, you want to convert that to liters per hour. Since there are 60 minutes in an hour, the pump fills \( 60x \) liters per hour. To replace the water lost, you set up the equation: \( 60x = 2 \). Solving for \( x \) gives you \( x = \frac{2}{60} = \frac{1}{30} \) liters per minute. For the pump to replace the 2 liters lost in one hour, it must run for 2 minutes. If the pump runs for 2 minutes at this rate, it will replace the lost water, keeping your aquarium full and happy!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad