Pregunta
upstudy study bank question image url

Question Given \( f(x)=\csc (2 x) \), write the equation of the line tangent to \( y=f(x) \) when \( x=\frac{3 \pi}{8} \)

Ask by Hammond Gordon. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the tangent line to \( f(x) = \csc(2x) \) at \( x = \frac{3\pi}{8} \) is: \[ y = 2\sqrt{2}x - \frac{3\sqrt{2}\pi}{4} + \sqrt{2} \]

Solución

To find the equation of the tangent line to the function \( f(x) = \csc(2x) \) at the point where \( x = \frac{3\pi}{8} \), we need to follow these steps: 1. **Calculate \( f\left(\frac{3\pi}{8}\right) \)** to find the y-coordinate of the point of tangency. 2. **Find the derivative \( f'(x) \)** to determine the slope of the tangent line at that point. 3. **Evaluate \( f'\left(\frac{3\pi}{8}\right) \)** to get the slope at \( x = \frac{3\pi}{8} \). 4. **Use the point-slope form of the equation of a line** to write the equation of the tangent line. Let's start with step 1. ### Step 1: Calculate \( f\left(\frac{3\pi}{8}\right) \) \[ f\left(\frac{3\pi}{8}\right) = \csc\left(2 \cdot \frac{3\pi}{8}\right) = \csc\left(\frac{3\pi}{4}\right) \] The cosecant function is the reciprocal of the sine function: \[ \csc\left(\frac{3\pi}{4}\right) = \frac{1}{\sin\left(\frac{3\pi}{4}\right)} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2} \] So, we have: \[ f\left(\frac{3\pi}{8}\right) = \sqrt{2} \] ### Step 2: Find the derivative \( f'(x) \) To find the derivative of \( f(x) = \csc(2x) \), we use the chain rule. The derivative of \( \csc(u) \) is \( -\csc(u) \cot(u) \cdot u' \), where \( u = 2x \) and \( u' = 2 \). Thus, \[ f'(x) = -\csc(2x) \cot(2x) \cdot 2 = -2 \csc(2x) \cot(2x) \] ### Step 3: Evaluate \( f'\left(\frac{3\pi}{8}\right) \) Now we need to evaluate the derivative at \( x = \frac{3\pi}{8} \): \[ f'\left(\frac{3\pi}{8}\right) = -2 \csc\left(2 \cdot \frac{3\pi}{8}\right) \cot\left(2 \cdot \frac{3\pi}{8}\right) = -2 \csc\left(\frac{3\pi}{4}\right) \cot\left(\frac{3\pi}{4}\right) \] We already know that \( \csc\left(\frac{3\pi}{4}\right) = \sqrt{2} \). Now we calculate \( \cot\left(\frac{3\pi}{4}\right) \): \[ \cot\left(\frac{3\pi}{4}\right) = \frac{\cos\left(\frac{3\pi}{4}\right)}{\sin\left(\frac{3\pi}{4}\right)} = \frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = -1 \] Now substituting these values back into the derivative: \[ f'\left(\frac{3\pi}{8}\right) = -2 \cdot \sqrt{2} \cdot (-1) = 2\sqrt{2} \] ### Step 4: Write the equation of the tangent line We have the point \( \left(\frac{3\pi}{8}, \sqrt{2}\right) \) and the slope \( 2\sqrt{2} \). Using the point-slope form of the equation of a line: \[ y - y_1 = m(x - x_1) \] Substituting \( m = 2\sqrt{2} \), \( x_1 = \frac{3\pi}{8} \), and \( y_1 = \sqrt{2} \): \[ y - \sqrt{2} = 2\sqrt{2}\left(x - \frac{3\pi}{8}\right) \] This is the equation of the tangent line. To express it in slope-intercept form, we can rearrange it: \[ y = 2\sqrt{2}x - 2\sqrt{2} \cdot \frac{3\pi}{8} + \sqrt{2} \] Thus, the final equation of the tangent line is: \[ y = 2\sqrt{2}x - \frac{3\sqrt{2}\pi}{4} + \sqrt{2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the equation of the tangent line to \( y = f(x) = \csc(2x) \) at \( x = \frac{3\pi}{8} \), we first need to calculate \( f\left(\frac{3\pi}{8}\right) \) and the derivative \( f'(x) \). 1. **Calculate \( f\left(\frac{3\pi}{8}\right) \):** \[ f\left(\frac{3\pi}{8}\right) = \csc\left(2 \cdot \frac{3\pi}{8}\right) = \csc\left(\frac{3\pi}{4}\right) = \frac{1}{\sin\left(\frac{3\pi}{4}\right)} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2} \] 2. **Find the derivative \( f'(x) \):** The derivative of \( \csc(2x) \) can be computed using the chain rule. The derivative of \( \csc(u) \) is \( -\csc(u) \cot(u) \), and then we multiply by the derivative of \( u = 2x \), which is 2. \[ f'(x) = -\csc(2x) \cot(2x) \cdot 2 = -2 \csc(2x) \cot(2x) \] 3. **Calculate \( f'\left(\frac{3\pi}{8}\right) \):** \[ f'\left(\frac{3\pi}{8}\right) = -2 \csc\left(\frac{3\pi}{4}\right) \cot\left(\frac{3\pi}{4}\right) = -2 \left(\sqrt{2}\right) \left(-1\right) = 2\sqrt{2} \] 4. **Form the tangent line equation:** The tangent line’s equation can be expressed as: \[ y - f(a) = f'(a)(x - a) \] where \( a = \frac{3\pi}{8} \). Plugging in our values: \[ y - \sqrt{2} = 2\sqrt{2} \left(x - \frac{3\pi}{8}\right) \] Rewrite this to standard form: \[ y = 2\sqrt{2}x - 2\sqrt{2}\left(\frac{3\pi}{8}\right) + \sqrt{2} \] This is the equation of the tangent line. Enjoy your journey with functions and their tangents! They are like the curves of our lives, constantly changing direction while remaining connected to the original path. For further understanding, diving into calculus textbooks can illuminate the fascinating world of derivatives and their real-world implications! Understanding the distinctions between different types of functions can provide great insight into their behavior. For example, knowing how trigonometric functions like sine and cosine relate to their reciprocal functions can enhance your mathematical prowess. Keep exploring, and you’ll uncover the beautiful connections that define math!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad