Pregunta
upstudy study bank question image url

(1) The fifth term of an arithmetic sequence is 0 and thirteenth term is 12 . Determine the sum of the first 21 terms of the sequence. 2) The \( 1^{\text {st }} \) term of an arithmetic sequence is 6 and the sum

Ask by Kelley Hart. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sum of the first 21 terms of the arithmetic sequence is 189.

Solución

To solve this problem, we will first determine the common difference of the arithmetic sequence using the given information. Then, we will find the sum of the first 21 terms of the sequence. Given: - The fifth term of the arithmetic sequence is 0. - The thirteenth term of the arithmetic sequence is 12. Let's denote the first term of the arithmetic sequence as \(a\) and the common difference as \(d\). 1. Determine the common difference: We know that the nth term of an arithmetic sequence is given by the formula: \[a_n = a + (n-1)d\] Given that the fifth term is 0, we have: \[a_5 = a + 4d = 0\] Given that the thirteenth term is 12, we have: \[a_{13} = a + 12d = 12\] Now, we can solve these two equations to find the values of \(a\) and \(d\). 2. Find the sum of the first 21 terms: Once we have the values of \(a\) and \(d\), we can use the formula for the sum of the first n terms of an arithmetic sequence: \[S_n = \frac{n}{2} \times (a + a_n)\] Let's proceed with solving the equations to find the common difference and then calculate the sum of the first 21 terms. Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}a+4d=0\\a+12d=12\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}a=-4d\\a+12d=12\end{array}\right.\) - step2: Substitute the value of \(a:\) \(-4d+12d=12\) - step3: Simplify: \(8d=12\) - step4: Divide both sides: \(\frac{8d}{8}=\frac{12}{8}\) - step5: Divide the numbers: \(d=\frac{3}{2}\) - step6: Substitute the value of \(d:\) \(a=-4\times \frac{3}{2}\) - step7: Simplify: \(a=-6\) - step8: Calculate: \(\left\{ \begin{array}{l}a=-6\\d=\frac{3}{2}\end{array}\right.\) - step9: Check the solution: \(\left\{ \begin{array}{l}a=-6\\d=\frac{3}{2}\end{array}\right.\) - step10: Rewrite: \(\left(a,d\right) = \left(-6,\frac{3}{2}\right)\) The solution to the system of equations is: \[a = -6\] \[d = \frac{3}{2}\] Now, let's find the sum of the first 21 terms of the arithmetic sequence using the formula: \[S_n = \frac{n}{2} \times (a + a_n)\] Substitute the values of \(a\), \(d\), and \(n\) into the formula to find the sum of the first 21 terms. Calculate the value by following steps: - step0: Calculate: \(\frac{21}{2}\left(-6+\left(-6+\frac{20\times 3}{2}\right)\right)\) - step1: Reduce the fraction: \(\frac{21}{2}\left(-6+\left(-6+30\right)\right)\) - step2: Add the numbers: \(\frac{21}{2}\left(-6+24\right)\) - step3: Add the numbers: \(\frac{21}{2}\times 18\) - step4: Reduce the numbers: \(21\times 9\) - step5: Multiply the numbers: \(189\) The sum of the first 21 terms of the arithmetic sequence is 189.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

In an arithmetic sequence, the nth term can be expressed as \( a_n = a + (n-1)d \), where \( a \) is the first term and \( d \) is the common difference. Given that the fifth term \( a_5 = 0 \) and the thirteenth term \( a_{13} = 12 \), you can set up two equations: \( a + 4d = 0 \) and \( a + 12d = 12 \). Solving these will reveal \( a = -12 \) and \( d = 3 \). The sum of the first 21 terms can be calculated using \( S_n = \frac{n}{2} (a + a_n) \), resulting in 126. For the second sequence, knowing that the first term is 6, you could then express the sum of n terms as \( S_n = \frac{n}{2} (2a + (n-1)d) \). If you know how many terms are summed, you can quickly plug in the values, and to find the common difference \( d \), you'll need either the total sum or another term specified in the sequence. Getting those values will make everything click!

preguntas relacionadas

Frau Witt fährt fünfmal pro Woche zur Arbeit. Die Arbeitsstelle ist 8 km 300 m von zu Hause entfernt. Wie viele km fährt sie in einer Woche? Kreuze die richtigen Rechenwege anl Begrùndel Man rechnet 8300 mal 5 , weil eine Arbeitswoche meistens 5 Tage hat. Man rechnet 8300 mal 5 und verdoppelt das Ergebnis für die Rückfahrt. Man rechnet 8300 mal 7 , weil eine Woche 7 Tage hat. Man rechnet 8300 mal 10 , weil sie die Strecke 10-mal in einer Woche fährt, 2) Wandle um! Verwende den Umwandlungsraster! 1 km 281 m - \( \qquad \) m \( \quad 6 \mathrm{~km} 400 \mathrm{~m}= \) \( \qquad \) m \( 21 \mathrm{~km} 4 \mathrm{~m}= \) \( \qquad \) \( 4 \mathrm{~km} 70 \mathrm{~m}= \) \( \qquad \) m \( \quad 26 \mathrm{~km} 380 \mathrm{~m}= \) \( \qquad \) m \( 3 \mathrm{~km} 3 \mathrm{~m}= \) \( \qquad \) m m (3) Entdecke die einzelnen Maße! \[ \begin{array}{rr} 14000 \mathrm{~m}= & 13041 \mathrm{~m}= \\ 3418 \mathrm{~m}= & 7005 \mathrm{~m}= \end{array} \] \( \qquad \) \( \qquad \) (4) Wandle in das jeweils kleinste angegebene Maß um! \( 2 \mathrm{~m} 356 \mathrm{~mm}= \) \( \qquad \) \( 5 \mathrm{~m} 3 \mathrm{dm}= \) \( \qquad \) \( 36 \mathrm{~m} 1 \mathrm{dm} 2 \mathrm{~cm}= \) \( \qquad \) \( 3 \mathrm{~m} 40 \mathrm{~cm}= \) \( \qquad \) \( 10 \mathrm{~m} 6 \mathrm{~cm}= \) \( \qquad \) \( 3 \mathrm{~m} 8 \mathrm{~mm}= \) \( \qquad \) \( 24 \mathrm{~m} 8 \mathrm{~cm}= \) \( \qquad \) \( 30 \mathrm{~m} 4 \mathrm{dm}= \) \( \qquad \) \( 7 \mathrm{~m} 78 \mathrm{~mm}= \) \( \qquad \) (5) Entdecke die einzelnen Maße! \[ \begin{array}{ll} 4512 \mathrm{~mm}= & 45200 \mathrm{~m}= \\ 16000 \mathrm{~m}= & 3008 \mathrm{~cm}= \\ 4200 \mathrm{dm}= & 1379 \mathrm{~mm}= \\ 14034 \mathrm{~m}= & 9888 \mathrm{~mm}= \end{array} \] \( \qquad \) \( \qquad \) \( \qquad \) 6 Welche Reihe passt zum Umwandlungsraster? \( \mathrm{km}-\mathrm{m}-\mathrm{m}-\mathrm{dm}-\mathrm{cm}-\mathrm{cm}-\mathrm{mm} \) \( k m-m-m-d m-d m-c m-m m \) \( k m-m-m-m-d m-c m-m m \) \( m m-c m-d m-m-m-k m \) (7) Wiederholungsaufgaben \( \underline{2885 \cdot 24} \) Entdecke die einzelnen Maße: \( 37403: 4= \) \( \qquad \) \( 160 \mathrm{~g}= \) \( \qquad \)
Aritmética Austria Jan 23, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad