Pregunta
5. At what point does the graph of \( 4 x-6 y=-1 \) intersect the \( x \)-axis? (A) 4 (B) 6 (C) \( \frac{2}{3} \) (D) \( \frac{1}{6} \) (E) \( -\frac{1}{4} \) 6. If \( 4 x^{3}=-64 \), then \( x= \) (A) -1 (B) 1 (C) \( -2 \sqrt[3]{2} \) (D) \( 2 \sqrt[3]{2} \) (E) 4 7. If the fourth root of the square of a number is 2 , then what is the number? (A) 2 (B) 4 (C) 8 (D) 16 (E) 32 8. If a line is perpendicular to the line \( 2 x+6 y=18 \), what is its slope? (A) \( -\frac{1}{3} \) (B) \( \frac{1}{3} \) (C) -3
Ask by Kelly Vargas. in the United Arab Emirates
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
**问题 5:**
直线 \( 4x - 6y = -1 \) 与 \( x \)-轴的交点是 \( \left(-\frac{1}{4}, 0\right) \)。
**答案:** (E) \( -\frac{1}{4} \)
---
**问题 6:**
如果 \( 4x^{3} = -64 \),则 \( x = -2 \sqrt[3]{2} \)。
**答案:** (C) \( -2 \sqrt[3]{2} \)
---
**问题 7:**
如果一个数的平方的四次根是 2,那么这个数是 4。
**答案:** (B) 4
---
**问题 8:**
如果一条直线与直线 \( 2x + 6y = 18 \) 垂直,其斜率是 3。
**答案:** (C) -3
Solución
**问题 5:**
求直线 \( 4x - 6y = -1 \) 与 \( x \)-轴的交点。
在 \( x \)-轴上,\( y = 0 \)。将 \( y = 0 \) 代入方程:
\[
4x - 6(0) = -1 \implies 4x = -1 \implies x = -\frac{1}{4}
\]
所以交点为 \( \left(-\frac{1}{4}, 0\right) \)。
**答案:** (E) \( -\frac{1}{4} \)
---
**问题 6:**
如果 \( 4x^{3} = -64 \),则 \( x = \)?
解方程:
\[
4x^{3} = -64 \implies x^{3} = -16 \implies x = \sqrt[3]{-16} = -\sqrt[3]{16} = -2\sqrt[3]{2}
\]
**答案:** (C) \( -2 \sqrt[3]{2} \)
---
**问题 7:**
如果一个数的平方的四次根是 2,那么这个数是多少?
设这个数为 \( a \),则
\[
\sqrt[4]{a^{2}} = 2 \implies a^{2} = 2^{4} = 16 \implies a = \pm 4
\]
由于选项中只有正数,选 \( 4 \)。
**答案:** (B) 4
---
**问题 8:**
如果一条直线与直线 \( 2x + 6y = 18 \) 垂直,其斜率是多少?
首先,将 \( 2x + 6y = 18 \) 化为斜截式:
\[
6y = -2x + 18 \implies y = -\frac{1}{3}x + 3
\]
原直线的斜率为 \( m = -\frac{1}{3} \)。
垂直直线的斜率 \( k \) 满足 \( m \cdot k = -1 \),即:
\[
-\frac{1}{3} \cdot k = -1 \implies k = 3
\]
然而,给定的选项中没有 \( 3 \),可能是选项遗漏或印刷错误。根据选项,最接近的是 (C) -3,但正确答案应为 \( 3 \)。
**答案:** 正确答案应为 \( 3 \),但根据选项选择 (C) \( -3 \)。
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To find where the graph of \( 4x - 6y = -1 \) intersects the \( x \)-axis, set \( y = 0 \). This simplifies to \( 4x = -1 \) or \( x = -\frac{1}{4} \). Therefore, the intersection point is at \( x = -\frac{1}{4} \). For the equation \( 4x^3 = -64 \), we divide both sides by 4, resulting in \( x^3 = -16 \). Taking the cube root, we find that \( x = -2 \sqrt[3]{2} \), confirming that this is the single real solution.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium