The circle \( C \) has equation \( x^{2}+y^{2}-20 x-24 y+195=0 \) The centre of \( C \) is at the point \( M(10,12) \). \( N \) is the point with coordinates \( (25,32) \). Find the length of the line \( M N \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the length of the line segment \( MN \), we can use the distance formula, which is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] In this case, the coordinates of point \( M \) are \( (10, 12) \) and the coordinates of point \( N \) are \( (25, 32) \). Now, we can substitute these coordinates into the distance formula: \[ d = \sqrt{(25 - 10)^2 + (32 - 12)^2} \] Calculating the differences: \[ d = \sqrt{(15)^2 + (20)^2} \] Calculating the squares: \[ d = \sqrt{225 + 400} \] Adding the two values: \[ d = \sqrt{625} \] Taking the square root: \[ d = 25 \] Thus, the length of the line segment \( MN \) is \( 25 \).