Pregunta
upstudy study bank question image url

a \( x^{2}-5 x+4 \) \( (x)(x) \) b. \( -700+x^{2}+12 \) c \( 6 x^{2}+21+x-30 \) d. \( 20 x^{2}+33 x+10 \) \( -6 a^{2}+1 d a-4 \) If \( 00^{2}-6 x-8 \) \[ 9 \cdot 8 x^{2}+22 x+5 \]

Ask by Wright Li. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified forms of the expressions: 1. \( x^{2} - 5x + 4 \) 2. \( x^{2} - 688 \) 3. \( 6x^{2} + x - 9 \) 4. \( 20x^{2} + 33x + 10 \) 5. \( -6a^{2} + 1da - 4 \) (needs clarification on \( a \) and \( d \)) 6. \( -6x - 8 \) 7. \( 72x^{2} + 22x + 5 \)

Solución

Let's break down the problem step by step. It seems like you have several expressions and equations that need to be addressed. ### Known Conditions 1. **Expression a**: \( x^{2} - 5x + 4 \) 2. **Expression b**: \( -700 + x^{2} + 12 \) 3. **Expression c**: \( 6x^{2} + 21 + x - 30 \) 4. **Expression d**: \( 20x^{2} + 33x + 10 \) 5. **Expression involving a and d**: \( -6a^{2} + 1da - 4 \) 6. **Expression involving x**: \( 00^{2} - 6x - 8 \) (likely a typo, assuming it should be \( 0^{2} - 6x - 8 \)) 7. **Expression**: \( 9 \cdot 8x^{2} + 22x + 5 \) ### Step 1: Simplifying Each Expression Let's simplify each expression where applicable. 1. **Expression a**: \( x^{2} - 5x + 4 \) is already in its simplest form. 2. **Expression b**: Simplifying \( -700 + x^{2} + 12 \): \[ x^{2} - 688 \] 3. **Expression c**: Simplifying \( 6x^{2} + 21 + x - 30 \): \[ 6x^{2} + x - 9 \] 4. **Expression d**: \( 20x^{2} + 33x + 10 \) is already in its simplest form. 5. **Expression involving a and d**: \( -6a^{2} + 1da - 4 \) needs clarification on what \( a \) and \( d \) represent. 6. **Expression involving x**: Assuming \( 0^{2} - 6x - 8 \) simplifies to: \[ -6x - 8 \] 7. **Expression**: \( 9 \cdot 8x^{2} + 22x + 5 \) simplifies to: \[ 72x^{2} + 22x + 5 \] ### Step 2: Further Analysis If you need to solve any of these expressions or equations, please specify which ones you would like to focus on. For example, if you want to solve for \( x \) in any of the quadratic expressions, we can use the quadratic formula or factorization methods. Please clarify your request so I can assist you further!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that quadratic equations, like the ones you just shared, can often be solved using the quadratic formula? The roots of the equation \( ax^2 + bx + c = 0 \) can be calculated using \( x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \). This nifty formula allows us to find the x-intercepts of a parabola, and it’s a must-know for anyone venturing into algebra! In real-world applications, quadratic equations pop up in various scenarios such as physics—think projectiles! If you want to calculate the trajectory of a ball thrown into the air, the height can typically be described by a quadratic equation. It’s fascinating how these concepts transcend classroom walls and help us understand the world around us more clearly!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad