Pregunta
upstudy study bank question image url

Mackenzie invested \( \$ 770 \) in an account paying an interest rate of \( 6.1 \% \) compounded continuously. Assuming no deposits or withdrawals are made, how long would it take, to the nearest year, for the value of the account to reach \( \$ 1,830 \) ?

Ask by Craig Munoz. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It will take approximately 14 years for the account to reach \$1,830.

Solución

To determine how long it will take for Mackenzie's investment to grow from \$770 to \$1,830 with continuous compounding at an annual interest rate of 6.1%, we can use the formula for continuous compound interest: \[ A = P e^{rt} \] Where: - \( A \) is the amount of money accumulated after time \( t \). - \( P \) is the principal amount (\$770). - \( r \) is the annual interest rate (6.1% or 0.061 in decimal). - \( t \) is the time in years. - \( e \) is the base of the natural logarithm. **Step-by-Step Calculation:** 1. **Set Up the Equation:** \[ 1830 = 770 \times e^{0.061t} \] 2. **Divide Both Sides by 770:** \[ \frac{1830}{770} = e^{0.061t} \] \[ 2.376623 = e^{0.061t} \] 3. **Take the Natural Logarithm of Both Sides:** \[ \ln(2.376623) = 0.061t \] \[ t = \frac{\ln(2.376623)}{0.061} \] 4. **Calculate the Natural Logarithm:** \[ \ln(2.376623) \approx 0.8657 \] 5. **Solve for \( t \):** \[ t = \frac{0.8657}{0.061} \approx 14.2 \text{ years} \] 6. **Round to the Nearest Year:** \[ t \approx 14 \text{ years} \] **Conclusion:** It will take approximately **14 years** for Mackenzie's investment to grow to \$1,830 under the given conditions. **Answer:** Approximately 14 years are needed for the account to reach \$1,830.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the time it takes for Mackenzie's investment to grow from \( \$ 770 \) to \( \$ 1,830 \) with continuous compounding, we can use the formula for continuous compounding: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after time \( t \) - \( P \) is the principal amount (\( \$ 770 \)) - \( r \) is the annual interest rate (decimal) (\( 0.061 \)) - \( t \) is the time in years - \( e \) is the base of the natural logarithm (approximately equal to 2.71828) We want to find \( t \) when \( A = 1830 \). Starting with the formula, we can plug in the values: \[ 1830 = 770 \cdot e^{0.061t} \] Dividing both sides by 770 gives: \[ \frac{1830}{770} = e^{0.061t} \] Calculating \( \frac{1830}{770} \) results in approximately \( 2.379 \). Now the equation becomes: \[ 2.379 = e^{0.061t} \] Taking the natural logarithm of both sides: \[ \ln(2.379) = 0.061t \] Now, calculate \( \ln(2.379) \): \[ \ln(2.379) \approx 0.866 \] Now, solve for \( t \): \[ t = \frac{0.866}{0.061} \approx 14.2 \] Rounding to the nearest year, it would take approximately **14 years** for Mackenzie’s investment to grow to \( \$ 1,830 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad