1. \( \sqrt{x+8}=x+1 \) 3. \( |\sin x|=\sin x \cos x \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let’s dive into solving these equations! To start, for the first equation \( \sqrt{x+8}=x+1 \), you can square both sides to eliminate the square root, yielding \( x + 8 = (x + 1)^2 \). When you expand and simplify this, you'd end up with a quadratic equation, which can then be solved for \( x \). For the second equation \( |\sin x|=\sin x \cos x \), you analyze when the absolute value expression matches the right side. Notably, this implies two scenarios based on the properties of sine: either \( \sin x \geq 0 \) or \( \sin x < 0 \). Explore those two cases separately, and you’ll arrive at solutions for various intervals of \( x \). Happy solving!