Pregunta
upstudy study bank question image url

\( f(x)=\log _{2}(x+3) \) and \( g(x)=\log _{2}(3 x+1) \). (a) Solve \( f(x)=4 \). What point is on the graph of \( f \) ? (b) Solve \( g(x)=4 \). What point is on the graph of \( g \) ? (c) Solve \( f(x)=g(x) \). Do the graphs of \( f \) and \( g \) intersect? If so, where? (d) Solve \( (f+g)(x)=7 \). (e) Solve \( (f-g)(x)=6 \).

Ask by Griffin Estrada. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **(a)** \( x = 13 \). Point: \( (13, 4) \) - **(b)** \( x = 5 \). Point: \( (5, 4) \) - **(c)** The graphs intersect at \( (1, 2) \) - **(d)** \( x = 5 \) - **(e)** \( x = -\dfrac{61}{191} \)

Solución

Let's solve each part step by step. ### (a) Solve \( f(x) = 4 \). What point is on the graph of \( f \)? Given: \[ f(x) = \log_2(x + 3) \] Set \( f(x) = 4 \): \[ \log_2(x + 3) = 4 \] Convert the logarithmic equation to its exponential form: \[ x + 3 = 2^4 \] \[ x + 3 = 16 \] \[ x = 16 - 3 \] \[ x = 13 \] **Point on the graph of \( f \):** \[ (13, 4) \] --- ### (b) Solve \( g(x) = 4 \). What point is on the graph of \( g \)? Given: \[ g(x) = \log_2(3x + 1) \] Set \( g(x) = 4 \): \[ \log_2(3x + 1) = 4 \] Convert to exponential form: \[ 3x + 1 = 2^4 \] \[ 3x + 1 = 16 \] \[ 3x = 16 - 1 \] \[ 3x = 15 \] \[ x = \frac{15}{3} \] \[ x = 5 \] **Point on the graph of \( g \):** \[ (5, 4) \] --- ### (c) Solve \( f(x) = g(x) \). Do the graphs of \( f \) and \( g \) intersect? If so, where? Set \( f(x) = g(x) \): \[ \log_2(x + 3) = \log_2(3x + 1) \] Since the logarithms are equal and have the same base, their arguments must be equal: \[ x + 3 = 3x + 1 \] Solve for \( x \): \[ x + 3 = 3x + 1 \] \[ 3 - 1 = 3x - x \] \[ 2 = 2x \] \[ x = 1 \] **Verify the solution is within the domain:** \[ x + 3 > 0 \Rightarrow 1 + 3 = 4 > 0 \] \[ 3x + 1 > 0 \Rightarrow 3(1) + 1 = 4 > 0 \] Both conditions are satisfied. **Find the corresponding \( y \):** \[ f(1) = \log_2(1 + 3) = \log_2(4) = 2 \] **Intersection Point:** \[ (1, 2) \] **Conclusion:** Yes, the graphs of \( f \) and \( g \) intersect at the point \( (1, 2) \). --- ### (d) Solve \( (f + g)(x) = 7 \). Given: \[ (f + g)(x) = f(x) + g(x) = \log_2(x + 3) + \log_2(3x + 1) \] Set equal to 7: \[ \log_2(x + 3) + \log_2(3x + 1) = 7 \] Combine the logarithms: \[ \log_2\left( (x + 3)(3x + 1) \right) = 7 \] Convert to exponential form: \[ (x + 3)(3x + 1) = 2^7 \] \[ (x + 3)(3x + 1) = 128 \] Expand the left side: \[ 3x^2 + x + 9x + 3 = 128 \] \[ 3x^2 + 10x + 3 = 128 \] Bring all terms to one side: \[ 3x^2 + 10x - 125 = 0 \] Solve the quadratic equation using the quadratic formula: \[ x = \frac{-10 \pm \sqrt{10^2 - 4 \cdot 3 \cdot (-125)}}{2 \cdot 3} \] \[ x = \frac{-10 \pm \sqrt{100 + 1500}}{6} \] \[ x = \frac{-10 \pm \sqrt{1600}}{6} \] \[ x = \frac{-10 \pm 40}{6} \] **Solutions:** \[ x = \frac{30}{6} = 5 \] \[ x = \frac{-50}{6} = -\frac{25}{3} \approx -8.333 \] **Check the domain:** \[ x = 5 \quad \text{is valid since} \quad 5 > -\frac{1}{3} \] \[ x = -\frac{25}{3} \quad \text{is invalid since} \quad -\frac{25}{3} < -\frac{1}{3} \] **Solution:** \[ x = 5 \] --- ### (e) Solve \( (f - g)(x) = 6 \). Given: \[ (f - g)(x) = f(x) - g(x) = \log_2(x + 3) - \log_2(3x + 1) \] Set equal to 6: \[ \log_2(x + 3) - \log_2(3x + 1) = 6 \] Combine the logarithms: \[ \log_2\left( \frac{x + 3}{3x + 1} \right) = 6 \] Convert to exponential form: \[ \frac{x + 3}{3x + 1} = 2^6 \] \[ \frac{x + 3}{3x + 1} = 64 \] Solve for \( x \): \[ x + 3 = 64(3x + 1) \] \[ x + 3 = 192x + 64 \] Bring all terms to one side: \[ x - 192x + 3 - 64 = 0 \] \[ -191x - 61 = 0 \] \[ 191x = -61 \] \[ x = -\frac{61}{191} \] **Simplify:** \[ x = -\frac{61}{191} \approx -0.319 \] **Check the domain:** \[ x + 3 > 0 \Rightarrow -\frac{61}{191} + 3 > 0 \quad \text{(True)} \] \[ 3x + 1 > 0 \Rightarrow 3\left(-\frac{61}{191}\right) + 1 > 0 \quad \text{(True)} \] **Solution:** \[ x = -\frac{61}{191} \] --- ### Summary of Solutions - **(a)** \( x = 13 \). Point: \( (13, 4) \) - **(b)** \( x = 5 \). Point: \( (5, 4) \) - **(c)** The graphs intersect at \( (1, 2) \) - **(d)** \( x = 5 \) - **(e)** \( x = -\dfrac{61}{191} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's solve the provided functions step by step! ### (a) Solve \( f(x) = 4 \): To solve the equation \( f(x) = \log_{2}(x + 3) = 4 \), we need to convert from logarithmic form to exponential form: \[ x + 3 = 2^4 \\ x + 3 = 16 \\ x = 16 - 3 \\ x = 13 \] So the point on the graph of \( f \) is \( (13, 4) \). ### (b) Solve \( g(x) = 4 \): Now for \( g(x) = \log_{2}(3x + 1) = 4 \). Again, converting to exponential form: \[ 3x + 1 = 2^4 \\ 3x + 1 = 16 \\ 3x = 16 - 1 \\ 3x = 15 \\ x = 15 / 3 \\ x = 5 \] The point on the graph of \( g \) is \( (5, 4) \). ### (c) Solve \( f(x) = g(x) \): This means we set the two functions equal: \[ \log_{2}(x + 3) = \log_{2}(3x + 1) \] Since the bases are the same, we can drop the logarithms: \[ x + 3 = 3x + 1 \\ 3 - 1 = 3x - x \\ 2 = 2x \\ x = 1 \] Substituting \( x = 1 \) back into either function gives: \[ f(1) = \log_{2}(1 + 3) = \log_{2}(4) = 2 \] Thus, the graphs of \( f \) and \( g \) intersect at the point \( (1, 2) \). ### (d) Solve \( (f+g)(x) = 7 \): The function can be expressed as: \[ f(x) + g(x) = \log_{2}(x + 3) + \log_{2}(3x + 1) = \log_{2}((x + 3)(3x + 1)) = 7 \] Transform to exponential form: \[ (x + 3)(3x + 1) = 2^7 \\ (3x^2 + 10x + 3) = 128 \\ 3x^2 + 10x - 125 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{-10 \pm \sqrt{10^2 - 4(3)(-125)}}{2(3)} \\ x = \frac{-10 \pm \sqrt{100 + 1500}}{6} \\ x = \frac{-10 \pm \sqrt{1600}}{6} \\ x = \frac{-10 \pm 40}{6} \] This gives us two possible values: - \( x = \frac{30}{6} = 5 \) - \( x = \frac{-50}{6} \), which is negative and thus not valid in this context. So, \( x = 5 \). ### (e) Solve \( (f-g)(x) = 6 \): The expression becomes: \[ f(x) - g(x) = \log_{2}(x + 3) - \log_{2}(3x + 1) = \log_{2} \left(\frac{x + 3}{3x + 1}\right) = 6 \] This converts to: \[ \frac{x + 3}{3x + 1} = 2^6 \\ \frac{x + 3}{3x + 1} = 64 \] Cross multiplying gives: \[ x + 3 = 64(3x + 1) \\ x + 3 = 192x + 64 \\ 3 - 64 = 192x - x \\ -61 = 191x \\ x = -\frac{61}{191} \] This value is negative and does not satisfy the domain of the logarithmic functions used. To summarize: - (a) Point on \( f \): \( (13, 4) \) - (b) Point on \( g \): \( (5, 4) \) - (c) Intersecting point: \( (1,

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad