Pregunta
upstudy study bank question image url

Texexp-314 is an isotope that is decaying \( 17 \% \) each day. Chemists initially have a 289-gram sample. Which of the following equations represents the amount of the isotope remaining after \( d \) days? \( y=289(0.17)^{d} \) \( y=289(0.83)^{d} \) \( y=289(1.17)^{d} \) \( y=314(0.83)^{d} \)

Ask by Bob Bright. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct equation is \( y = 289(0.83)^{d} \).

Solución

To determine the correct equation representing the amount of the isotope **Texexp-314** remaining after \( d \) days, let's analyze the problem step by step. ### Given: - **Initial amount** (\( y_0 \)) = 289 grams - **Daily decay rate** = 17% ### Understanding Decay: A 17% daily decay means that each day, **83%** of the isotope remains (since \( 100\% - 17\% = 83\% \)). ### Exponential Decay Formula: The general formula for exponential decay is: \[ y = y_0 \times (1 - \text{decay rate})^d \] Plugging in the given values: \[ y = 289 \times (0.83)^d \] This equation accurately represents the remaining amount of the isotope after \( d \) days. ### Evaluating the Options: 1. **\( y = 289(0.17)^d \)** - Incorrect. This represents only the decayed portion, not the remaining amount. 2. **\( y = 289(0.83)^d \)** - **Correct.** This correctly models the remaining isotope after \( d \) days. 3. **\( y = 289(1.17)^d \)** - Incorrect. This implies an increase, which contradicts the decay process. 4. **\( y = 314(0.83)^d \)** - Incorrect. The initial amount should be 289 grams, not 314 grams. ### **Answer:** \[ y = 289(0.83)^{d} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the correct equation, we need to understand the decay process. Since Texexp-314 is decaying \( 17\% \) each day, that means \( 83\% \) of the sample remains after each day. Thus, we can represent the remaining amount using the formula: initial amount multiplied by the remaining percentage raised to the power of the number of days. The correct equation is \( y = 289(0.83)^{d} \), as it accurately reflects that \( 83\% \) of the isotope remains after each day. The concept of exponential decay can be seen in various natural processes, such as radioactive decay and the cooling of warm objects. Interestingly, just like a decaying isotope, our smartphone batteries also lose charge over time, demonstrating the science of decay in everyday life. So, next time you check your battery percentage or reminisce about a half-forgotten snack, remember—you’ve got a little science in your pocket!

preguntas relacionadas

Latest Chemistry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad