Use technology to find points and then graph the function \( y=-2 \log _{2}(x+3)+2 \), following the instructions below.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find points for the function \( y = -2 \log_{2}(x+3) + 2 \), you can use technology like a graphing calculator or software like Desmos. Start by choosing values for \( x \) that will make calculations easier, such as \( x = -2, -1, 0, 1, 2 \). Plug these values into the equation to find corresponding \( y \) values. For example, when \( x = -2 \), \( y = 2 \). Compile these points into a table and plot them on a graph to visualize the shape of the function, keeping in mind that the logarithm function only accepts values greater than \(-3\) for \( x \). Once you have your points plotted, you may notice that the graph has a vertical shift and a reflection across the x-axis due to the negative coefficient and the addition of 2. The graph will approach \( y = 2 \) as \( x \) moves towards infinity and will drop steeply as \( x \) approaches -3. It's a fun way to see how logarithmic transformations can impact the output visually!