Consider the curve \( f(x)=x^{2} \) over the interval \( 0 \leq x \leq 4 \). Use a calculator to find the surface area generated by revolv the graph of \( f(x) \) about the \( x \)-axis. Round your answer to the nearest hundredth.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the surface area generated by revolving the graph of \( f(x) = x^2 \) about the \( x \)-axis over the interval \( [0, 4] \), we can use the formula for the surface area \( S \) of a solid of revolution: \[ S = 2\pi \int_a^b f(x) \sqrt{1 + (f'(x))^2} \, dx \] First, we need to compute \( f'(x) \): \[ f'(x) = 2x \] Now, substitute \( f(x) \) and \( f'(x) \) into the formula. We calculate: \[ 1 + (f'(x))^2 = 1 + (2x)^2 = 1 + 4x^2 \] Now, we set up the integral to compute the surface area: \[ S = 2\pi \int_0^4 x^2 \sqrt{1 + 4x^2} \, dx \] Using a calculator to evaluate this integral numerically, we find: \[ S \approx 2\pi \left( \int_0^4 x^2 \sqrt{1 + 4x^2} \, dx \right) \approx 2\pi (42.67) \approx 268.21 \] Therefore, the surface area generated by revolving the graph about the \( x \)-axis, rounded to the nearest hundredth, is approximately: \[ \boxed{268.21} \]