Find the minimum value of the function \( f(x)=x^{2}-2 x+6 \) to the nearest hundredth.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the minimum value of the function \( f(x) = x^2 - 2x + 6 \), we can rewrite it in vertex form by completing the square. 1. Start with the quadratic function: \[ f(x) = x^2 - 2x + 6 \] 2. To complete the square, take the coefficient of \( x \), which is \(-2\), halve it to get \(-1\), and then square it to get \(1\). 3. Rewrite the function: \[ f(x) = (x^2 - 2x + 1) + 6 - 1 \] \[ = (x - 1)^2 + 5 \] 4. The expression \( (x - 1)^2 \) reaches its minimum value of \(0\) when \( x = 1\). 5. Therefore, the minimum value of \( f(x) \) is: \[ f(1) = 0 + 5 = 5 \] Thus, the minimum value of \( f(x) \) is \( \boxed{5.00} \) when rounded to the nearest hundredth.