Pregunta
Expand the logarithm as much as possible. Rewrite the expression as a sum, difference, or product of logs. \[ \ln \left(\frac{1}{9^{k}}\right) \] Enclose arguments of functions in parentheses and include a multiplication sign between terms. For example, \( c^{*} \ln (h) \). \( \ln \left(\frac{1}{9^{k}}\right)= \)
Ask by Kelley Sandoval. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\ln \left(\frac{1}{9^{k}}\right) = -2k \ln(3)
\]
Solución
To expand the logarithm \(\ln \left(\frac{1}{9^{k}}\right)\) as much as possible, we can use the properties of logarithms step by step.
1. **Quotient Rule of Logarithms:**
\[
\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)
\]
Apply this to the given expression:
\[
\ln \left(\frac{1}{9^{k}}\right) = \ln(1) - \ln(9^{k})
\]
2. **Simplify \(\ln(1)\):**
\[
\ln(1) = 0
\]
So the expression becomes:
\[
0 - \ln(9^{k}) = -\ln(9^{k})
\]
3. **Power Rule of Logarithms:**
\[
\ln(a^{b}) = b \cdot \ln(a)
\]
Apply this to \(\ln(9^{k})\):
\[
-\ln(9^{k}) = -k \cdot \ln(9)
\]
4. **Expressing 9 as a Power of 3:**
Since \(9 = 3^{2}\), we can further expand \(\ln(9)\):
\[
\ln(9) = \ln(3^{2}) = 2 \cdot \ln(3)
\]
Substitute this back into the expression:
\[
-k \cdot \ln(9) = -k \cdot 2 \cdot \ln(3) = -2k \cdot \ln(3)
\]
**Final Expanded Form:**
\[
\ln \left(\frac{1}{9^{k}}\right) = -2 \cdot k \cdot \ln(3)
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
\( \ln \left(\frac{1}{9^{k}}\right) = \ln (1) - \ln (9^{k}) \) Since \( \ln (1) = 0 \), this simplifies to \( - \ln (9^{k}) \), leading to \( -k \cdot \ln (9) \). Thus, the complete expansion is \( -k \cdot \ln (9) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium