Pregunta
upstudy study bank question image url

Simplifying an Expression In Exercises 89-92, simplify the expression. \( \begin{array}{ll}\text { 89. } 7 \sqrt{72}-5 \sqrt{18} & \text { 90. }-10 \sqrt{25 y}-\sqrt{y} \\ \text { 91. } 7^{3 / 2} \cdot 7^{11 / 2} & \text { 92. } \frac{10^{17 / 4}}{10^{5 / 4}} \\ \text { Operations with Polynomials In Exercises 93-9 } \\ \text { perform the operation and write the result in standa } \\ \text { form. } \\ \text { 93. }(9 x-4)+\left(2 x^{2}-x+15\right) \\ \text { 94. } 4 x\left(11-x+3 x^{2}\right) \\ \text { 95. }(2 x+9)(x-7) \\ \text { 96. }\left(3 x^{2}-5\right)\left(-x^{2}+1\right)\end{array} \)

Ask by Wang Gough. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified answers for each problem: 1. **Problem 89:** \( 27\sqrt{2} \) 2. **Problem 90:** \( -51\sqrt{y} \) 3. **Problem 91:** \( 7^7 \) 4. **Problem 92:** \( 10^3 \) 5. **Problem 93:** \( 2x^2 + 8x + 11 \) 6. **Problem 94:** \( 12x^3 - 4x^2 + 44x \) 7. **Problem 95:** \( 2x^2 - 5x - 63 \) 8. **Problem 96:** \( -3x^4 + 8x^2 - 5 \) If you need further assistance or more detailed explanations, please let me know!

Solución

Certainly! Let's simplify each of the given expressions step by step. --- **Problem 89.** Simplify \( 7 \sqrt{72} - 5 \sqrt{18} \) **Solution:** 1. **Factor the radicals to simplify:** \[ \sqrt{72} = \sqrt{36 \times 2} = \sqrt{36} \times \sqrt{2} = 6\sqrt{2} \] \[ \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \] 2. **Substitute back into the expression:** \[ 7 \times 6\sqrt{2} - 5 \times 3\sqrt{2} = 42\sqrt{2} - 15\sqrt{2} \] 3. **Combine like terms:** \[ (42 - 15)\sqrt{2} = 27\sqrt{2} \] **Answer:** \( 27\sqrt{2} \) --- **Problem 90.** Simplify \( -10 \sqrt{25 y} - \sqrt{y} \) **Solution:** 1. **Simplify the radicals:** \[ \sqrt{25y} = \sqrt{25} \times \sqrt{y} = 5\sqrt{y} \] 2. **Substitute back into the expression:** \[ -10 \times 5\sqrt{y} - \sqrt{y} = -50\sqrt{y} - \sqrt{y} \] 3. **Combine like terms:** \[ (-50 - 1)\sqrt{y} = -51\sqrt{y} \] **Answer:** \( -51\sqrt{y} \) --- **Problem 91.** Simplify \( 7^{3/2} \cdot 7^{11/2} \) **Solution:** 1. **Use the property of exponents:** \( a^m \cdot a^n = a^{m+n} \) \[ 7^{3/2} \cdot 7^{11/2} = 7^{(3/2 + 11/2)} = 7^{14/2} = 7^{7} \] **Answer:** \( 7^7 \) --- **Problem 92.** Simplify \( \frac{10^{17/4}}{10^{5/4}} \) **Solution:** 1. **Use the property of exponents:** \( \frac{a^m}{a^n} = a^{m-n} \) \[ \frac{10^{17/4}}{10^{5/4}} = 10^{(17/4 - 5/4)} = 10^{12/4} = 10^3 \] **Answer:** \( 10^3 \) --- **Problem 93.** Perform the operation and write the result in standard form: \( (9x - 4) + (2x^{2} - x + 15) \) **Solution:** 1. **Remove parentheses:** \[ 9x - 4 + 2x^2 - x + 15 \] 2. **Combine like terms:** - \( 2x^2 \) (only quadratic term) - \( 9x - x = 8x \) (linear terms) - \( -4 + 15 = 11 \) (constant terms) 3. **Arrange in standard form (descending powers of \( x \)):** \[ 2x^2 + 8x + 11 \] **Answer:** \( 2x^2 + 8x + 11 \) --- **Problem 94.** Perform the operation and write the result in standard form: \( 4x(11 - x + 3x^{2}) \) **Solution:** 1. **Distribute \( 4x \) to each term inside the parentheses:** \[ 4x \times 11 + 4x \times (-x) + 4x \times 3x^2 = 44x - 4x^2 + 12x^3 \] 2. **Arrange in standard form (descending powers of \( x \)):** \[ 12x^3 - 4x^2 + 44x \] **Answer:** \( 12x^3 - 4x^2 + 44x \) --- **Problem 95.** Perform the operation and write the result in standard form: \( (2x + 9)(x - 7) \) **Solution:** 1. **Use the FOIL method (First, Outer, Inner, Last):** \[ (2x)(x) + (2x)(-7) + (9)(x) + (9)(-7) = 2x^2 - 14x + 9x - 63 \] 2. **Combine like terms:** \[ 2x^2 - 5x - 63 \] **Answer:** \( 2x^2 - 5x - 63 \) --- **Problem 96.** Perform the operation and write the result in standard form: \( (3x^{2} - 5)(-x^{2} + 1) \) **Solution:** 1. **Distribute each term in the first polynomial to each term in the second polynomial:** \[ 3x^2 \times (-x^2) + 3x^2 \times 1 + (-5) \times (-x^2) + (-5) \times 1 \] \[ = -3x^4 + 3x^2 + 5x^2 - 5 \] 2. **Combine like terms:** \[ -3x^4 + (3x^2 + 5x^2) - 5 = -3x^4 + 8x^2 - 5 \] 3. **Arrange in standard form (descending powers of \( x \)):** \[ -3x^4 + 8x^2 - 5 \] **Answer:** \( -3x^4 + 8x^2 - 5 \) --- If you have any further questions or need additional explanations, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Simplifying expressions isn’t just a math exercise; it has a rich history! In ancient Greece, mathematicians like Euclid laid the groundwork for algebraic techniques that we still use today. They mastered the art of simplifying ratios and proportions, which eventually led to more complex algebraic expressions. So, the next time you’re simplifying, think of the brilliant minds that came before! In modern life, simplifying expressions has essential applications, especially in fields like engineering and computing. For instance, engineers simplify equations to design safer buildings, while computer scientists might simplify algorithms for faster processing. Understanding how to simplify expressions helps make complex problems more manageable, saving time and resources in countless real-world situations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad