Kate multiplied two binomials using the distributive property. She made a mistake in one of the steps. Where did she first make a mistake? \( (x-2)(3 x+4) \) 1. \( (x-2)(3 x)+(x-2)(4) \) 2. \( (x)(3 x)+(2)(3 x)+(x)(4)+(2)(4) \) 3. \( 3 x^{2}+6 x+4 x+8 \) 4. \( 3 x^{2}+10 x+8 \) A. Step 1 B. Step 3 C. Step 4 D. Step 2
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
In Step 2, Kate incorrectly multiplied the second term of the first binomial. The correct multiplication of \((x-2)(3x+4)\) should lead her to multiply the \(-2\) by both \(3x\) and \(4\), producing \(-2 \cdot 3x = -6x\) and \(-2 \cdot 4 = -8\). She skipped the negative sign on the \(2\), leading to incorrect coefficients in the final answer. Looking at Step 3, Kate incorrectly combined values in her expression. The expression \(3x^2 + 6x + 4x + 8\) should actually sum to \(3x^2 + 10x - 8\). The mistake continues to carry through to Step 4 where the final simplification wrongly reports a positive 8 instead of the negative 8 that should be there. Thus, the first mistake was in Step 2, which cascaded into other errors.